

Avaya Aura™ Application Enablement
Services
JTAPI Programmer’s Guide

02-603488
Release 5.2
November 2009
Issue 1

Application Enablement Services JTAPI Programmer’s Guide Page 2 of 86

© 2009 Avaya Inc. All Rights Reserved

Notice

While reasonable efforts were made to ensure that the information in this document was
complete and accurate at the time of printing, Avaya Inc. can assume no liability for any errors.
Changes and corrections to the information in this document may be incorporated in future
releases.

For full support information, please see the complete document,

Avaya Support Notices for Software Documentation, document number 03-600758.

To locate this document on our Web site, simply go to http://www.avaya.com/support and
search for the document number in the search box.

Documentation disclaimer

Avaya Inc. is not responsible for any modifications, additions, or deletions to the original
published version of this documentation unless such modifications, additions, or deletions were
performed by Avaya. Customer and/or End User agree to indemnify and hold harmless Avaya,
Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments
arising out of, or in connection with, subsequent modifications, additions or deletions to this
documentation to the extent made by the Customer or End User.

Link disclaimer

Avaya Inc. is not responsible for the contents or reliability of any linked Web sites referenced
elsewhere within this documentation, and Avaya does not necessarily endorse the products,
services, or information described or offered within them. We cannot guarantee that these links
will work all of the time and we have no control over the availability of the linked pages.

Warranty

Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to establish
the terms of the limited warranty. In addition, Avaya’s standard warranty language, as well as
information regarding support for this product, while under warranty, is available through the
following Web site: http://www.avaya.com/support.

Copyright

Except where expressly stated otherwise, the Product is protected by copyright and other laws
respecting proprietary rights. Unauthorized reproduction, transfer, and or use can be a criminal,
as well as a civil, offense under the applicable law.

Avaya support

Avaya provides a telephone number for you to use to report problems or to ask questions about
your product. The support telephone number is 1-800-242-2121 in the United States. For
additional support telephone numbers, see the Avaya Web site: http://www.avaya.com/support.

CONTENTS
CONTENTS .. 3

1. About this Document .. 5
1.1 Scope of this Document ... 5
1.2 Intended Audience ... 5
1.3 Conventions used in this document ... 6
1.4 Related documents ... 6
1.5 Providing documentation feedback ... 7

2. Avaya implementation of JTAPI ... 8
2.1 Understanding basic concepts of JTAPI.. 8
2.2 Avaya implementation of standard JTAPI API ...10
2.3 Avaya extensions to JTAPI ...10

3. Getting Started ...11
3.1 Understanding the Avaya JTAPI architecture ..11
3.2 Setting up the development environment ..13
3.3 JTAPI properties ..20
3.4 Accessing the client API reference documentation...23
3.5 Learning from the sample code ..23

4. Writing a JTAPI application ..25
4.1 Initializing a JTAPI application ...25
4.2 Catching Exceptions ...28
4.3 Change from “observer” to “listener” paradigm ..30
4.4 Requesting notification of events ..31
4.5 Call Control – Basic Telephony operations ...32
4.6 Getting DNIS, ANI information for a call ..36
4.7 Cleanup ..36
4.8 Security Considerations..36
4.9 Heartbeats ..37
4.10 JTAPI Applets ...37

5. Compiling and debugging ...38
5.1 Installing Java ..38
5.2 Compiling and running ..38
5.3 Debugging ..41

6. Using the JTAPI Exerciser ..44

Application Enablement Services JTAPI Programmer’s Guide Page 4 of 86

APPENDIX A – Avaya implementation specific deviations from the JTAPI specification57

APPENDIX B – Avaya implementation specific enhancements to the JTAPI specification63

APPENDIX C: TSAPI and JTAPI API level comparisons ..75

APPENDIX D - TSAPI Error Code Definitions ...79

Glossary ..85

1. About this Document

1.1 Scope of this Document
This document shows you how to use the Application Enablement (AE) Services JTAPI
implementation to develop, debug, and deploy telephony applications.

• Chapter 1: “About this document” details certain pre-requisites required to read this
document and lists supporting reference documents

• Chapter 2: “Avaya JTAPI Implementation” provides background information about JTAPI
in general and the AE Services JTAPI implementation in particular.

• Chapter 3: “Getting Started” gets you ready to configure and program to this API, as well
as walk through the JTAPI exerciser and sample code.

• Chapter 4: “Writing a client application” and Chapter 5: “Compiling and Debugging” guide
you in developing and debugging applications.

• Appendix A and Appendix B list Avaya specific deviations and enhancements to the
JTAPI API respectively.

• Appendix C is a useful reference for TSAPI developers starting to use the JTAPI API or
vice versa. It also provides a mapping of deprecated observer style events that were the
norm in JTAPI 1.2 to their JTAPI 1.4 listener equivalents

• Appendix D lists key features in Communication Manager that you may wish to take
advantage of in developing your applications.

• Appendix E: lists all of the values for the TSAPI error codes.

• The Glossary defines the terminology and acronyms used in this document.

1.2 Intended Audience
This document is written for application developers. A developer must know:

• Java™

• telephony concepts

• JTAPI object model

You do not need to understand Avaya Communication Manager features and concepts, but such
an understanding might be helpful.

If you are new to JTAPI, you may wish to start by reading the JTAPI overview whitepaper at the
following link:

http://java.sun.com/products/jtapi/reference/whitepapers/index.html

Additionally, consider reading a portion of the JTAPI 1.4 specification, which can be found here:

http://java.sun.com/products/jtapi/

Upon downloading and unzipping the archive for the 1.4 specification, open the index.html file.
After clicking the Description link at the top of this page, you will find several Overview
paragraphs. Click the JTAPI core Overview link for a helpful overview of JTAPI concepts.

The Avaya JTAPI Javadoc, Avaya MultiVantage Application Enablement Services JTAPI
Programmers Reference, found online on the Avaya DevConnect Web site

Application Enablement Services JTAPI Programmer’s Guide Page 6 of 86

(http://www.avaya.com/devconnect) and on the Avaya Support Web site
(http://www.avaya.com/support) under “Communication Systems”.

For those new to Avaya Communication Manager, you may wish to take a course from Avaya
University (http://www.avaya.com/learning) to learn more about Communication Manager and its
features. It is recommended that you start with the Avaya Communication Manager Overview
course (course ID AVA00383WEN).

1.3 Conventions used in this document
The following fonts are used in this document:

To represent... This font is used...

Java class, method and field names the getDeviceID method

Window names The buttons are assigned on the Station form

Browser selections Select Member Login

Hypertext links Go to the http://www.avaya.com/support
website.

1.4 Related documents
While planning, developing, deploying, or troubleshooting your application, you may need to
reference other Avaya MultiVantage Application Enablement Services documents, Avaya
Communication Manager documents, or JTAPI documents listed below.

1.4.1 Application Enablement Services documents
For developers, the other important source of Java API information is the Javadoc:

• Avaya MultiVantage Application Enablement Services JTAPI Programmers Reference

Here you can find details about each package, interface, class, method, and field in the API. You
can also find out what parts of the JTAPI protocol have been implemented.

Other Application Enablement Services documents include:

• Avaya Aura™ Application Enablement Services Overview (02-300360)

• Avaya Aura™ Application Enablement Services Installation and Upgrade Guide for a
Software Only Offer (02-300355)

• Avaya Aura™ Application Enablement Services Installation and Upgrade Guide for a
Bundled Server (02-300356)

• Avaya Aura™ Application Enablement Services Administration and Maintenance Guide
(02-300357)

• Avaya Aura™ Application Enablement Services OAM Help (HTML)

• Avaya Aura™ Application Enablement Services 5.2 TSAPI for Avaya Communication
Manager Programmer’s Reference (02-300544)

You can find all these documents online on the Avaya Support Center Web Site:
http://support.avaya.com.

Application Enablement Services JTAPI Programmer’s Guide Page 7 of 86

1.4.2 Communication Manager documents
Since this API gives you programmable access to Avaya Communication Manager features, you
may wish to reference documents about that system. The following documents from the
Communication Manager documentation set provide additional information about administering
Communication Manager for Device, Media and Call Control API. They are on the Avaya Support
Centre Web Site (http://www.avaya.com/support).

• Administering Avaya Aura™ Communication Manager (Issue 5.0 for CM 5.2), (03-
300509)

• Administration for Network Connectivity for Avaya Aura™ Communication Manager
(Issue 14), (555-233-504)

1.4.3 JTAPI documents
The Java Programmers Reference (Javadoc) contains much of what you need to know about the
JTAPI API. For JTAPI details not found in the Javadoc or this document, please refer to the
JTAPI specification. It is found in the Publications section of the ECMA web site
(http://java.sun.com/products/jtapi/):

• JTAPI 1.4 specification

1.5 Providing documentation feedback
Let us know what you like or do not like about this document. Although we cannot respond
personally to all your feedback, we promise we read each response we receive. Please email
feedback to document@avaya.com

Thank you.

2. Avaya implementation of JTAPI
This chapter provides a high level overview of JTAPI concepts and packages

Avaya has implemented the following packages.

• JTAPI Core Package (javax.telephony)

• JTAPI Core Events Package (javax.telephony.events)

• JTAPI Call Center Package (javax.telephony.callcenter)

• JTAPI Call Center Events Package (javax.telephony.callcenter.events)

• JTAPI Call Control Package (javax.telephony.callcontrol)

• JTAPI Call Control Events Package (javax.telephony.callcontrol.events)

• JTAPI Media Package (javax.telephony.media)

• JTAPI Media Events Package (javax.telephony.media.events)

• JTAPI Private Data Package (javax.telephony.privatedata)

Note: The JTAPI Phone Package and the JTAPI Phone Events Package are not supported.
Many of the features represented by this package are available from the AE Services Device,
Media and Call Control API.

Please refer to Appendix A for a full description of the behavior you can expect when you invoke
Avaya’s implementation of certain JTAPI APIs.
Please refer to Appendix B for a description of Avaya specific enhancements to the JTAPI
specification

2.1 Understanding basic concepts of JTAPI
Before getting into package details, let’s understand a few basic concepts of JTAPI. JTAPI stands
for Java Telephony API. It is a standard that was created through the Java Community Process
(JCP). JTAPI 1.4 is specified by Java Specification Request (JSR) 43.

The following diagram shows the JTAPI call model and the objects that compose the call model.
A description of each object follows the diagram. The diagram and descriptions were largely
taken directly from the JSR 43 specification. Further details can be found in that specification.

Application Enablement Services JTAPI Programmer’s Guide Page 9 of 86

Figure 1: JTAPI Call Model

Provider Object
The Provider object is an abstraction of telephony service-provider software. In the case of
Avaya, the Provider is an abstraction of a Communication Manager. A Provider hides the service-
specific aspects of the telephony subsystem and enables Java applications and applets to
interact with the telephony subsystem in a device-independent manner. The Provider is the core
object with which a JTAPI application interacts to obtain references to the other JTAPI objects
described below.

Call Object
The Call object represents a telephone call, the information flowing between the service provider
and the call participants. A telephone call comprises a Call object and zero or more connections.
In a two-party call scenario, a telephone call has one Call object and two connections. A
conference call is three or more connections associated with one Call object.

Address Object
The Address object represents a telephone number. It is an abstraction for the logical endpoint of
a telephone call. Note that this is quite distinct from a physical endpoint. In fact, one address may
correspond to several physical endpoints (i.e. Terminals)

Connection Object

Application Enablement Services JTAPI Programmer’s Guide Page 10 of 86

A Connection object models the communication link between a Call object and an Address
object. This relationship is also referred to as a "logical" view, because it is concerned with the
relationship between the Call and the Address (i.e. a logical endpoint). Connection objects may
be in one of several states, indicating the current state of the relationship between the Call and
the Address. These Connection states are summarized later.

Terminal Object
The Terminal object represents a physical device such as a telephone and its associated
properties. Each Terminal object may have one or more Address Objects (telephone numbers)
associated with it, as in the case of some office phones capable of managing multiple call
appearances. The Terminal is also known as the "physical" endpoint of a call, because it often
corresponds to a physical piece of hardware.

TerminalConnection Object
TerminalConnection objects model the relationship between a Connection and the physical
endpoint of a Call, which is represented by the Terminal object. This relationship is also known as
the "physical" view of the Connection (in contrast to the Connection, which models the logical
view). The TerminalConnection describes the current state of relationship between the
Connection and a particular Terminal. The states associated with the TerminalConnection are
described later in this document.

2.2 Avaya implementation of standard JTAPI API
Most API calls are implemented faithfully as specified by the JTAPI specification with certain
notable deviations. These deviations are mainly of the following types,

• Extra pre-conditions or CM / AE server settings required
• unsupported API’s
• certain API post conditions

Please refer to Appendix A for more information.

2.3 Avaya extensions to JTAPI
These include value-added extensions that Avaya has added to the standard JTAPI
implementation.

These extensions fall under four main categories

• Extensions to JTAPI exceptions (to provide CSTA/ACS error codes)

• Extensions to JTAPI provider events (to provide low level information regarding the
provider state)

• Communication Manager extensions to JTAPI exposing CM features to a JTAPI
application

• Private data extensions to JTAPI (to assist independent switch vendors in the creation of
a private data package for their switches, or allow application programmers to use or
interpret private data when they are supplied with private data in its raw form)

Most extensions are provided via interfaces in the com.avaya.jtapi.tsapi package that extend the
standard JTAPI interfaces.

Please refer to Appendix B for more information

3. Getting Started
This section describes what you need to do and what you need to know before you begin
programming to this API.

3.1 Understanding the Avaya JTAPI architecture
The diagram below illustrates the architecture for the Avaya implementation of JTAPI. Application
invocations on JTAPI objects result in CSTA 1 messages being exchanged with the TSAPI
service on AES. The TSAPI service then converts between CSTA 1 and ASAI and exchanges
ASAI messages with CM.

It is important to note that the JTAPI operational model is quite different than the CSTA
operational model. That means that the Avaya JTAPI library is a rather sophisticated piece of
software. It does not simply translate an API invocation to a single CSTA message and vice
versa. Instead, it must maintain call state and often translate an API invocation into a series of
CSTA messages.

Figure 2: Avaya JTAPI architecture

3.1.1 Tlink
A Tlink (or T-Link) represents a TSAPI CTI link between the AE Services server and
Communication Manager. When a communication channel (i.e. switch connection) is provisioned
between AE Services server and Communication Manager a Tlink is created dynamically by the
TSAPI service running on AE Services server. There can only be one Tlink for one AES-
Communication Manager combination. However, multiple Tlinks can be created between one AE
Services server and multiple Communication Managers or vice-versa. Thus, multiple Tlinks will

CSTA 1 / ASN.1

JTAPI Application

Avaya JTAPI Library

AES TSAPI Service

CM

ASAI

Application Enablement Services JTAPI Programmer’s Guide Page 12 of 86

allow a JTAPI application to work with any number of AE servers each fronting upto 16 CM
servers with unique identifiers for each of those pairs.

Each JTAPI application needs to specify one of the available Tlinks at the time of opening the
ACS stream with AE Services server. Through the chosen Tlink, the TSAPI service learns which
CM the application wishes to interact with on this session. (A single AES may support multiple
CM systems).

The Tlink is of type String and has following format:

AVAYA#Switch_Connection#Service_Type#AE_Services_Server_Name

For example AVAYA#CMSIM#CSTA#AESSIM, where

1. “AVAYA” is a fixed constant.

2. Switch_Connection is a unique name assigned to identify a switch (i.e., Communication

Manager). In general, hostname of the switch is assigned as the name of Switch

Connection in the AE Services server.

3. Service_Type: refers to the CSTA service type. It can be either of the following:

o “CSTA” - For using unencrypted TSAPI Link (non-secure connection).

o “CSTA-S” - For using encrypted TSAPI Link (secure connection).

The CSTA versus CSTA-S service types specify whether or not encryption is used

between the application and the AE Services server.

4. AE_Services_Server_Name represents the host name of the AE Services server which is

assigned during the AE Services installation.

3.1.1.1 Alternate TLINK
As of Release 4.1.0, AE Services introduces the Alternate Tlinks feature to provide a link
failover capability for the JTAPI client. To effect this failover capability you must specify the
alternate Tlinks in the JTAPI Configuration file.

Note: When multiple AE Servers are used as alternates, the username and password
specified by the application in the getProvider() request should be configured
identically for each AE Server.

Follow these steps to set up a list of alternate Tlinks in the TSAPI.PRO file. You are essentially
adding statements that specify a list of alternate Tlinks for the TSAPI Service.

• Locate the TSAPI.PRO file and open for editing (explained later)
• Add a list of alternate Tlink entries, using the following format.

 Alternates (TLINK) = TLINK1:TLINK2:TLINK3:TLINK4

where:

Alternates is the label for the first ordered list (you can have up to 16 lists)
(TLINK) is the name of the preferred Tlink, for example (AVAYA#CM1#CSTA#AESRV1). Be sure
to enclose the preferred Tlink name in parentheses.

Application Enablement Services JTAPI Programmer’s Guide Page 13 of 86

= The equal sign is a separator between the preferred Tlink, and the list of 1 to 4 alternate Tlinks.
You must use the equal sign (=) to separate the preferred Tlink and the list of additional alternate
Tlinks.
TLINK1:TLINK2:TLINK3:TLINK4 is an ordered list of Tlink names that are used as alternates if
the preferred Tlink is not available. Be sure to separate each Tlink name with a colon. You can
specify from 1 to 4 Tlinks for each list of alternates.

Examples

In Example 1, there are two AE Servers, AESRV1 and AESRV2, that each have a TSAPI link to
the same switch, CM1. If AESRV1 is unavailable, the TSAPI client will attempt to use AESRV2
instead of AESRV1.

Example1
Alternates(AVAYA#CM1#CSTA#AESRV1)=AVAYA#CM1#CSTA#AESRV2

In Example 2, there are four AE Servers that each have a TSAPI link to the same switch, CM1.
If AESRV1 is unavailable, the TSAPI client will attempt to use AESRV2 instead of AESRV1.
If AESRV2 is also unavailable, then the TSAPI client will attempt to use AESRV3.
If AESRV3 is also unavailable, then the TSAPI client will attempt to use AESRV4.
If AESRV4 is also unavailable, then the TSAPI client will not be able to establish a connection
with an AE server.

Example 2
Alternates(AVAYA#CM1#CSTA#AESRV1)=AVAYA#CM1#CSTA#AESRV2:AVAYA#CM1#CS
TA#AESRV3:AVAYA#CM1#CSTA#AESRV4

3.2 Setting up the development environment
Applications can be developed in any environment supporting Sun Microsystems™ Java 2
Platform, Standard Edition (J2SE™) 1.5 or higher.

3.2.1 Downloading the Java SDK
Your development machine needs to have a 5.0 J2SE Java Development Kit (JDK) installed
(1.5.0_10 or newer). If it is not already installed, download it from Sun Microsystem’s Web site:

1. Download a 5.0 J2SE JDK (1.5.0_10 or above) from http://java.sun.com.

2. Install the Java J2SE JDK according to the instructions provided by Sun Microsystems.

3. Make sure that the system PATH has been updated to point to this JDK.

4. Run a sample Java program to verify the proper installation of the Java platform.

Note: JDK 1.4.2 or earlier versions are not supported

3.2.2 Downloading the Application Enablement Services JTAPI SDK
Here are the hardware and software requirements for JTAPI SDK.

CPU Any platform that supports Sun’s Java Virtual Machine (VM),
Version 1.04 or later

RAM Platform-dependent

Disk Space 20 MB

Application Enablement Services JTAPI Programmer’s Guide Page 14 of 86

Browser Internet Explorer (6.0 or later)

Java Development Kit
(JDK)

AE Services requires JDK 1.5, or later.

To download the Application Enablement Services JTAPI SDK from the Avaya DevConnect Web
site:

1. Go to http://www.avaya.com/devconnect.

2. Select Member Login.

3. Log in with your email address and password.

4. Download the SDK ”jtapi-sdk-5.2.x.y.zip”.from the DevConnect Web site by navigating to the
Application Enablement Services page and selecting the appropriate SDK from the Technical
Resources section. “x” will denote the maintenance release number while “y” will denote the build
number.

Note: The Application Enablement Services page can be located through the Avaya Product
Information/Documentation/SDKs link under the left-hand Do Your Research menu options.

It does not matter where you download the files in your directory system. The SDK file is: jtapi-
sdk-5.2.x.y.zip where “x” will denote the maintenance release number while “y” will denote the
build number.

5. Expand the SDK ZIP file using any application or tool that recognizes the ZIP file format. All of
the SDK files are placed into a single directory.

The Avaya JTAPI implementation is no longer distributed as a windows client installer, but as a
simple zip file with Ant based scripts to build and run the samples. As a consequence of this,

• Applications should now move to a model where the JTAPI jar file is included with the
application installer

• Applications are encouraged to use Ant or an equivalent tool to build and run their
application. They should ensure that their build / launch script specifies the CLASSPATH
to the jar file and (if applicable) directory containing TSAPI.PRO.

• If the system on which this new 5.2 JTAPI has been unpacked, has an existing
installation of an earlier version of JTAPI client/sdk version 4.2.X or earlier, it is
recommended that they be un-installed before proceeding ahead. This could avoid
potential CLASSPATH conflict issues in the future. This applies not only to the system
where the SDK is unpacked but also to any systems where the new application
(containing 5.2 jar files) is deployed. In case it is not feasible to change an existing client
application’s build / launch mechanism, the JTAPI jar file in the JTAPI install directory
(C:\Program Files\Avaya\AE Services\JTAPI Client\JTAPI by default) should be replaced
by the ecsjtapia.jar file in this distribution.

6. For a quick verification you can run this from a command line (DOS prompt / UNIX shell) –
“java –jar JTAPI_SDK_PATH/lib/ecsjtapia.jar ECSJtapiVersion”, where JTAPI_SDK_PATH is the
absolute path to the directory where the JTAPI SDK was unzipped. Also, it is assumed that the
system PATH points to the right JDK. The above command should print the Avaya JTAPI library
version. For further testing, see sample TSTest in section 3.5.3

Application Enablement Services JTAPI Programmer’s Guide Page 15 of 86

Important artifacts in this distribution include

Directory / File Description

ant Ant 1.7.1 distribution, used by scripts to compile the sample
applications

conf/TSAPI.PRO TSAPI.PRO file read by the sample applications

conf/log4j.properties Log4j.properties files used by the sample applications.

javadoc This includes javadocs for the javax/telephony,
com/avaya/jtapi/tsapi and com/avaya/jtapi/tsapi/adapters packages.
Please see the Accessing the client API reference documentation
for more information.

lib/ecsjtapia.jar Avaya’s implementation of the JTAPI 1.4 spec.

lib/log4j-1.2.12.jar Logging dependency used internally by ecsjtapia.jar for logging.

lib/servlet-api-2.5-
6.1.1.jar

Servlet 2.5 specification required for recompiling the TSTest web
application

resources/
avayaprca.jks

A Java Key Store containing the Avaya Product PKI Root CA
Certificate.

sampleapps Sample applications bundled with this release. Please see Learning
from the sample code section for more details

sampleapps/bin Contains an ant based build file (build.xml) to build and run the
sample apps. As a convenience, build scripts (both MS-DOS and
Linux based) to invoke this ant build file are also provided in this
directory.

tools/jtapiex The JTAPI exerciser used to quickly test out JTAPI API’s. Refer to
the chapter on JTAPI Exerciser.

tools/bin Contains scripts (both MS-DOS and Linux based) to start the
JTAPI exerciser

.classpath, .project Eclipse specific files, used to quickly setup the file in the eclipse
environment. Please see the “Using Eclipse” section for more
details

Readme.txt Contains information regarding features new to this release,
instructions for running sample applications, links to online
resources and late breaking changes that could not be included in
this document

3.2.3 Setting up your test environment
Before running an application you will need to have an AE Services machine set up. For
instructions see the appropriate Avaya MultiVantage™ Application Enablement Services
Installation and Upgrade Guide for the offer you have purchased (bundled server or software
only).

Application Enablement Services JTAPI Programmer’s Guide Page 16 of 86

3.2.4 Configuring your JTAPI client library
In order for your JTAPI application to run, two main categories of configuration are required:
configuration of JTAPI properties, and log4j configuration. Sample configuration can be found in
the TSAPI.PRO and log4j.properties files in the SDK_PATH/conf directory.

Please note that unlike previous releases, TSAPI.PRO is not a required configuration file
anymore. Properties that were traditionally set in TSAPI.PRO can now be passed as system
properties to your JTAPI application. However these property keys need to be prefixed by
com.avaya.jtapi.tsapi

For example, the TSAPI.PRO debugLevel can also be passed as a system property named
com.avaya.jtapi.tsapi.debugLevel.

Please note that in case a property is specified in both TSAPI.PRO as well as via its equivalent
system property, the TSAPI.PRO entries will be given precedence.

3.2.4.1 Configuration properties
The JTAPI library can be configured by setting certain properties. See section "JTAPI properties"
to learn more about these JTAPI properties.

The primary configuration required in order to run a JTAPI application is the AES IP Address or
DNS name. There are three ways to provide this information:

Method Additional Information

Using
TSAPI.PRO

Please create a file named TSAPI.PRO anywhere in the application’s class path or in
the directory from which the application is run. In case TSAPI.PRO is available at both
these locations, the file in class path is given precedence.

This file should at a bare minimum contain line(s) of the format
<AES_IP_ADDRESS>:<TSAPI_SERVICE_PORT>

TSAPI_SERVICE_PORT is 450 by default

Using
system
properties

All system properties with keys pre-pended by com.avaya.jtapi.tsapi are read by the
JTAPI application. If the AE server is not found in a TSAPI.PRO file, it will attempt to
read it from the “com.avaya.jtapi.tsapi.servers” property.

This property value must be of the format

<AES_IP_ADDRESS1>:<TSAPI_SERVICE_PORT1>,<AES_IP_ADDRESS2>:<TSAPI
_SERVICE_PORT2>

Using the
connect
string

The string parameter to the JtapiPeer.getProvider() method can contain the AE
server(s) to connect.

The format of the String is “<tlink>;login=<loginID>;passwd=<pw>;servers=<server
entries>”

Where server entries follows the format

<AES_IP_ADDRESS1>:<TSAPI_SERVICE_PORT1>,<AES_IP_ADDRESS2>:<TSAPI
_SERVICE_PORT2>

Please ping the AE server address/DNS name from the box where your client application runs,
before configuration.

Application Enablement Services JTAPI Programmer’s Guide Page 17 of 86

3.2.4.2 Log4j configuration
Previous releases of this JTAPI implementation relied on a custom logging implementation. As of
version 5.2, log4j has been incorporated as the logging mechanism. Hence, as with all log4j
based applications, logging can now be configured with a log4j.properties file.

In order to maintain backward compatibility, the implementation reads the debugLevel and other
logging related properties and programmatically configures the log4j implementation with
reasonable log4j equivalents.

A programmatic API call ITsapiProvider#setDebugPrinting(boolean) is also available. This API
can be used to enable/disable debug printing in the implementation at runtime. Setting this param
to 'true' will enable trace logging for the com.avaya.jtapi.tsapi logger. A value of 'false' results in
logging either turned down to ERROR if error logging was already enabled when this API was
called or OFF if error logging was originally disabled.

The implementation honors the following order of precedence

1. Programmatic configuration (i.e. ITsapiProvider#setDebugPrinting(boolean))

2. TSAPI.PRO configuration

3. Log4j.properties configuration

The samples provide an included log4j.properties file which contains four different commonly
used configurations of log4j as examples. In all scenarios, the root appender is configured as a
console appender

Configuration Description

A In this case, only messages of level “error” and worse are logged to files named
jtapiErrors.log.n, where n is a number from starting from 1 to 15. Use of each file
as a log destination is discontinued once the file size hits 50 MB and the next
file starts getting used. Please note that this is the recommended level of
logging that should be enabled by default by all client applications

B In this case, only messages of level “error” and worse are logged to files named
jtapiErrors.log. This file grows indefinitely, limited by only hard disk space
availability. These messages are also duplicated on the console.

C In this case two different files are produced, one containing trace data (all
messages that the library can generate excluding audit dumps) and another
containing only error data. These messages are not duplicated on the console.

D In this case, trace data is logged to 16 rotating files 50MB each with fine grained
logs enabled (Threshold set to ALL), while errors are logged to jtapiErrors.log,
These messages are not duplicated on the console.

Please check the “debugging” section of this guide for more information on log4j related
configuration for ecsjtapia.jar.

For more information regarding log4j please refer to the log4j home page at
http://logging.apache.org/log4j

3.2.5 Running the JTAPI SDK contents

3.2.5.1 Using the scripts provided
The JTAPI SDK includes two scripts at JTAPI_SDK_PATH/sampleapps/bin and
JTAPI_SDK_PATH/tools/bin to run the samples and exerciser respectively. Both DOS and UNIX

Application Enablement Services JTAPI Programmer’s Guide Page 18 of 86

versions are available at these locations. These scripts setup the required PATH/java
CLASSPATH and run the applications. (JTAPI_SDK_PATH points to the directory where the
JTAPI SDK has been unzipped).

Running the samples

Please navigate to the ‘sampleapps/bin’ directory and type “ant help”. This will provide further
help to run the sample you require.

For example, on Windows assuming JTAPI_SDK_PATH as D:\jtapi-sdk-5.2.0.dev …

D:\jtapi-sdk-5.2.0.dev\sampleapps\bin>ant help

Buildfile: build.xml

help:

 [echo] buildAll -- builds all the sample apps.

 [echo] clean -- cleans up generated classes of all samples.

 [echo] buildAcdSampleApp -- builds the ACD sample app.

 [echo] runAcdSampleApp -- runs the ACD sample app.

 [echo] buildAutoAnswerSampleApp -- builds the AutoAnswer sample app.

 [echo] runAutoAnswerSampleApp -- runs the AutoAnswer sample app.

 [echo] buildCallLogSampleApp -- builds the CallLog sample app.

 [echo] runCallLogSampleApp -- runs the CallLog sample app.

 [echo] buildRouteSampleApp -- builds the Route sample app.

 [echo] runRouteSampleApp -- runs the Route sample app.

 [echo] buildTsTestSampleApp -- builds the TsTest sample app.

 [echo] distTsTestWebApp -- creates a war for TsTest sample app

 [echo] runTsTestSampleApp -- runs the TsTest sample app.

 [echo] help -- Prints this information message.

BUILD SUCCESSFUL

Total time: 0 seconds

D:\jtapi-sdk-5.2.0.dev\sampleapps\bin>

As described above all “build*SampleApp” targets build individual samples or “buildAll” will build
all samples, while “run*” targets run individual samples.

An exception is the “distTsTestWebApp” which does not run the TSTest sample, but builds it and
packages it as a WAR file suitable for deployment into any J2EE container like Tomcat
(http://tomcat.apache.org/) or WebLogic (http://www.oracle.com/appserver/weblogic/weblogic-
suite.html).

For more information on WAR files please see http://java.sun.com/j2ee/tutorial/1_3-
fcs/doc/WebComponents3.html

Application Enablement Services JTAPI Programmer’s Guide Page 19 of 86

Running the web sample

The web sample tstest.war can be run in any servlet container. The following instructions use
Tomcat 6 as an example.

• Download Tomcat 6 from http://tomcat.apache.org/

• Unzip it to the file system and place tstest.war in directory TOMCAT_HOME/webapps
where TOMCAT_HOME is the location where tomcat was unzipped.

• Start the server using the script startup.bat/startup.sh (depending on your OS) found in
location TOMCAT_HOME/bin

• The servers should print an INFO level message stating that the tstest web application
deployed successfully.

• Visit http://localhost:8080/tstest with a web browser.

Running the JTAPI exerciser

Please navigate to the tools/bin directory and type “ant”. This will start up a Swing GUI that can
be used to quickly test out JTAPI API’s. For more information regarding the JTAPI exerciser,
please refer to the JTAPI Exerciser section

3.2.5.2 Using the Eclipse development environment
If Eclipse is your development environment of choice, you can take advantage of the Eclipse
project files that are included with the SDK.

Simply create a new project in the JTAPI SDK directory on your file system, and that project will
automatically be configured with appropriate sample app source files and class-path.

The instructions below are applicable to Eclipse 3.2. Please search for “New Project Wizard” in
the eclipse help for more information on how to complete this operation

• Select File > New > Project from the Eclipse menu.

• Select Java Project and click “Next”

• Enter a project name and select “Create project from existing source”

• In the “Directory” field, enter the directory path where the .project and .classpath files of
the SDK reside,

• Ensure you are using a 1.5 JDK and click “Finish”

Alternatively, you can use the import wizard of eclipse to import from the file system to an existing
project. Please search for “Import Wizard” in the eclipse help for more information on how to
complete this operation

Running the samples

Please first update TSAPI.PRO and log4j.properties in the conf directory as described above.

Each sample can be run by right clicking on the sample’s main class and selecting “Run As >>
Java Application” or “Debug As >> Java Application”

The main classes for each sample are as detailed below

Sample Main Class

ACD sample acd.ui.ACDFrame

Application Enablement Services JTAPI Programmer’s Guide Page 20 of 86

TSTest sample tstest.ui.TSTestFrame

Call log sample calllog.CallLog

Route sample route.ui.RouteFrame

Auto answer sample autoanswer.ui.AutoAnswerFrame

Running the JTAPI exerciser in Eclipse

The instructions below to run the exerciser as a java application, apply to eclipse 3.2. They may
vary slightly depending on your eclipse installation.

• Please update TSAPI.PRO in the conf directory,

• Open the debug configuration dialog of eclipse using Run > Debug … from the Eclipse
menu.

• Right click on “Java Application” in the tree menu to the left and select “New”

• Ensure that the correct Java project containing the SDK is selected.

• Ensure that “Include libraries when searching for a main class” is selected

• Enter “jtapiex.Jtapiex” in the main class field and click “Debug” to start the exerciser.

For more information on the exerciser, please see Using the JTAPI Exerciser

3.3 JTAPI properties
Below is a list of properties that can be passed to the JTAPI implementation to allow greater
control over its behavior. These properties can be set in a configuration file or passed in as
System Properties. If defining them in a configuration file, name it as TSAPI.PRO and place in the
CLASSPATH or the application’s working directory (defined by the java system property
“user.dir”). If defining these properties as System Properties, please prefix them with
‘com.avaya.jtapi.tsapi.’. eg. com.avaya.jtapi.tsapi.debugLevel=5

Property Name Description Default
value

altTraceFile Full path of the file for JTAPI logs None
traceFileCount Maximum number of trace files. 10
traceFileSize Maximum size of trace files. Size may be

expressed as an integer in the range 0 –
2^63. Suffixes “KB”, “MB” or “GB” can be
used to indicate kilobytes, megabytes or
gigabytes respectively

50MB

errorFile Full path of the file for error logs None
errorCount Maximum number of error files. 10
errorFileSize Maximum size of error files. Size may be

expressed as an integer in the range 0 –
2^63. Suffixes “KB”, “MB” or “GB” can be
used to indicate kilobytes, megabytes or
gigabytes respectively

50MB

debugLevel The following values are accepted:
0 => No logging
1 – 5 => Information messages
6 =>debug logs (Logs all CSTA/ACS
messages exchanged)

0

Application Enablement Services JTAPI Programmer’s Guide Page 21 of 86

7 => Logs entry / exit of API implementation
invocations (methods in classes in the
com.avaya.jtapi.tsapi.impl package and
invocation of observer/listener callbacks)
7 (with enableAuditDumps property set to
true) => Audit dumps and trace messages

maxWaitForSocket Maximum time to wait (in seconds) for JTAPI
to connect to TSAPI. Note: Windows platform
may not support a value higher than 20. Even
if the application sets a value higher than 20
seconds, on Windows it may timeout in less
than 20 seconds.

20

propertyRefreshRate The rate (in seconds) at which properties will
be re-read from TSAPI.PRO / System
properties. Only intervals of 10 seconds are
supported. Values that are not a multiple of
10 will be rounded up.

100

callCleanupRate The rate (in seconds) at which JTAPI will
audit calls to clean up any calls that should
no longer exist. Only intervals of 10 seconds
are supported. Values that are not a multiple
of 10 will be rounded up.

100

trustStoreLocation The path to the trust store containing trusted
certificates. See section 3.3.1

System
classpath.

trustStorePassword The password to the trust store containing
trusted certificates specified by
‘trustStoreLocation’.

“password”

verifyServerCertificate It is a setting that determines whether the
JTAPI client verifies the Fully Qualified
Domain Name (FQDN) in the Server
Certificate (for added security).

• If you want the client to check the
certificate for the FQDN, use this
setting:verifyServerCertificate=true.

• When this setting is true, the JTAPI
client will validate the date range of
the server's certificate and validate
that the server's certificate chain is
trusted

• If you do not want the client to check
the certificate for the FQDN, use this
setting: verifyServerCertificate=false.

false

useTlinkIP Indicates whether JTAPI should use the IP
address from TSAPI.PRO (0) or that from the
ACS Enum Services response (1)

0

tsDevicePerformanceOptimization When true, internal TSDevice objects are not
deleted from the Provider's device hash. This
reduces the overhead of repeatedly sending
CSTAQueryDeviceInfo requests to the
switch.

false

maxThreadPoolSize The maximum number of threads for the
thread pool that is used to deliver events to
the application.

20

enableAuditDump A boolean value that indicates whether the
audit thread should dump state to the log file.

False

Application Enablement Services JTAPI Programmer’s Guide Page 22 of 86

getServicesTimeout The maximum number of seconds to wait for
AES to respond with the set of TLinks that it
supports. In some cases, it may take longer
than 10 seconds for TSAPI to timeout when
attempting to resolve a Worktop IP Address
to a hostname.

Please try increasing this timeout if the
JtapiPeer.getServices() API logs an error in
the log file or it returns an empty list
(assuming other parameters like the server
name and port are correct).

10

callCompletionTimeout The maximum number of seconds to wait for
postconditions to be met following a
Call.connect(), LucentCallEx2.fastConnect(),
CallControlCall.consult() or
CallCenterCall.connectPredictive() operation.

Please try increasing this timeout if any of the
above API calls fails with an error “Could not
meet post-conditions of <api-name>”

15

3.3.1 Specifying location of certificates
As of Release 4.0.1, the AE Services provides Transport Layer Security (TLS) for encrypting links
between the JTAPI client and the AE Services server. If you plan to use encrypted links, you have
the option of using the certificate from the AE Services license file (this is the default), or the CA
certificate issued by a trusted in-house or third-party certificate authority (also referred to as your
own certificate). For more information about certificates, see Chapter 1: Managing certificates
from the document “Application Enablement Services TSAPI and CVLAN Client and SDK
Installation Guide” (02-300543).

Note:
You do not have to add any configuration settings for certificates under the following conditions:

• You do not use encrypted links, and, hence, certificates.
• You use encrypted Tlinks with the certificate from the AE Services license file. (This is the

default.) The certificate from the AE Services license file is signed by the Avaya Product
Root Certificate Authority (CA), and a Java Key Store containing the certificate for the
Avaya Product Root CA is installed with the JTAPI client as <installation-
directory>\avayaprca.jks. Therefore, you do not need to configure the location of the
Trusted CA File in the tsapi.pro configuration file.

Defining Certificate configuration properties - If you have installed your own certificates on the
AE Server, you must define the following properties to specify where your certificates are located.
For example:

trustStoreLocation=C:\\Documents and Settings\\user\\certs\\aesCerts.jks
trustStorePassword=password
verifyServerCertificate=true|false (optional)

As mentioned in Section 3.3 these properties can be defined through TSAPI.PRO or System
properties.

Application Enablement Services JTAPI Programmer’s Guide Page 23 of 86

3.4 Accessing the client API reference documentation
You will need to reference the Java Programmer’s Reference (Javadoc) provided with this API. It
is available on the Avaya Support site (from the Avaya support Web site
(http://www.avaya.com/support) as both a viewable HTML document and a downloadable zip file.

This html documentation is included with the SDK. This documentation describes all of the
interfaces and their parameters.

To access the Javadoc bundled in the SDK,

1. Go to the jtapi-sdk-5.2.x.y/javadoc directory.

2. Double click on index.html (or open this file with a browser).

The Javadoc includes descriptions of classes in the following packages:

● javax/telephony/**

This section of the Javadoc is also available if you download the JTAPI specification except for
“Implementation Notes” attached to some API’s. These sections describe where Avaya’s
implementation of the SDK

• deviates from the specification,

• adds extra functionality not described in the specification or

• doesn’t support the functionality mentioned in the specification

Please refer to the “Implementation Notes” sections where ever available, while writing your
application.

• com/avaya/jtapi/tsapi

This package contains non-standard Avaya specific additions to the JTAPI API, created to
make Communication Manager features, TSAPI service extensions and Avaya private data
extensions available to users.

• com/avaya/jtapi/tsapi/adapters

This package contains adapter equivalents for all listener interfaces in the JTAPI
specification. The methods in these adapters are empty and provided as a convenience for
easily creating listeners by extension, overriding only the methods of interest.

Unsupported parts of the specification like the javax.telephony.mobile package and a large
majority of the javax.telephony.media package are not included in the Javadoc.

3.5 Learning from the sample code

3.5.1 ACD sample

This sample demonstrates using the JTAPI Call Center package. The ACD sample does the
following operations:

• gets the ACDAddresses known to the provider and the agents logged-in at those ACD
splits.

• tries to log-in two agents specified.

Application Enablement Services JTAPI Programmer’s Guide Page 24 of 86

• Ensures the agents logged in successfully
• Tries to log out the agents
• Ensures that no agents remain logged in

3.5.2 CallLog application

This application uses JTAPI along with some of the AE Services extensions to JTAPI to access
functionality specific to Communication Manager. The CallLog application has the following
purposes:

• To monitor a terminal to log all incoming and outgoing calls to/from the specified device.
"User To User information," if any, associated with the call is also displayed.

• To make calls and send "User To User information," if specified, along with the call.
• To send DTMF through an active call.
• To disconnect an active call.

3.5.3 TSTest application (in the TSTest directory)

Use TSTest to make and hang up a call in order to test the installation of the JTAPI client
software. TSTest can be executed as a web application or a stand-alone Java application.

Once the “TSTest Application” window is open, complete the fields as follows:

• In the LoginInfo->Login field, type your CT User user id.
• In the LoginInfo->Password field, type your CT User password.
• Click ‘Next’
• In the TSTestInfo->Service field, select the TLINK that corresponds to the AES-CM to be

tested.
• In the TSTestInfo->Caller field, type a phone number that is administered in Avaya

Communication Manager.
• In the TSTestInfo->Callee field, type another phone number that is administered in Avaya

Communication Manager.
• Click Dial to make the call.

3.5.4 Route sample

The route sample demonstrates the use of the JTAPI Call Center package. It is a routing
application that registers the VDN specified for routing. When a call is received by the VDN, the
sample requests a route destination. When the route destination is entered, the call is routed to
that destination.

3.5.5 Auto answer sample
The auto answer sample demonstrates a client application which monitors a terminal and auto
answers any call placed to that terminal. The call is dropped after a brief interval.

4. Writing a JTAPI application
This chapter describes how to write an application using the Application Enablement Services
JTAPI API. It will frequently refer to the details in the Javadoc, so you may wish to have ready
access to the Javadoc while reading this chapter. Read Accessing the client API reference
documentation to find out how to get access to the Javadoc and where to find which kinds of
information within the Javadoc.

4.1 Initializing a JTAPI application
Initializing a JTAPI application involves following the sequence of steps listed below:

• Getting the JtapiPeer object.
• Getting the services list.
• Getting the provider.

4.1.1 Getting the JtapiPeer object
The term 'peer' is Java nomenclature for "a platform-specific implementation of a Java interface
or API". The JtapiPeer interface in the javax.telephony package represents a vendor’s particular
implementation of the Java Telephony API (in this case Avaya’s).

An instance of the JtapiPeer object can be obtained using the JtapiPeerFactory class. The
getJtapiPeer() method of the JtapiPeerFactory class returns a JtapiPeer object that, in turn,
enables applications to obtain the Provider object.

The JtapiPeerFactory.getJtapiPeer() method returns an instance of a JtapiPeer object given a
fully qualified classname of the class which implements the JtapiPeer object. If no classname is
provided (i.e., if classname is null), a default class named DefaultJtapiPeer is chosen as the
classname to be loaded. If it does not exist or is not installed in the CLASSPATH as the default, a
JtapiPeerUnavailableException exception is thrown.

Following is the syntax of the getJtapiPeer() method:

public static JtapiPeer getJtapiPeer(java.lang.String jtapiPeerName)

The code snippet below shows the procedure to obtain JtapiPeer object:
/*
* Get the JtapiPeer object using JtapiPeerFactory class
*/
try
{
peer = JtapiPeerFactory.getJtapiPeer(null);
}
catch (Exception excp)
{
System.out.println("Exception during getting JtapiPeer: " + excp);
}

The exception thrown is JtapiPeerUnavailableException which indicates that the JtapiPeer can
not be located using the CLASSPATH that is available.

Application Enablement Services JTAPI Programmer’s Guide Page 26 of 86

In most cases, an application can provide a null parameter and accept the default JtapiPeer
implementation. The catch block is required because the API throws a checked exception, but no
exception should be thrown because a null parameter was passed.

4.1.2 Getting the services list
Once the application has successfully accessed a JtapiPeer object, the application typically gets
a listing of the services that are supported by the system(s) implementing the JtapiPeer object.
The services supported are the links from the AE Services server(s) to one or more
Communication Managers that are provisioned and active. These links are also referred to as
CTI-links. The application uses the getServices() method to acquire the list.

Following is the syntax of the getServices() method:

public java.lang.String[] getServices()

After getting a JtapiPeer object, the application needs to retrieve a list of the supported CTI-links
provisioned on the AE Services server. The getServices() method returns an array of the services
that this implementation of JtapiPeer supports. This method returns null if no services are
supported. The getServices() method uses the IP addresses of the AE Services server(s) passed
in the TSAPI.PRO file or via system properties or using the connect string, to get all the CTI-links
(See Tlink) configured on each of the AES.

Please see the JTAPI properties section for more information regarding these options.

If no services are returned from the getServices() method request, check the AES’s IP address in
the TSAPI.PRO file and the provisioning and state of the CTI-links on the AES.

Following is a sample Java code snippet for retrieving the services supported by the JtapiPeer
implementation:
try
{
/*
* Get service method services supported by the JtapiPeer implementation
*/
String[] services;
services = peer.getServices();
if(services == null)
{
System.out.println("Unable to obtain the services list from JTAPI peer.\n”);
System.exit(0);
}
String myService = serv[0];
}
catch (Exception ex)
{
System.out.println("Exception during getting services: " + ex);
}

Once getServices() has returned a list of the services available on the AES server(s) listed in the
TSAPI.PRO file, the application can use any one of those services to create a Provider object.

4.1.3 Getting the provider
The next step for the application is to acquire a Provider instance from the JTAPI middleware. A
Provider represents the telephony software-entity (i.e. AE Services) that interfaces with a

Application Enablement Services JTAPI Programmer’s Guide Page 27 of 86

telephony subsystem such as Communication Manager. Please refer to section 4.1 for more
details.

Following is the sample Java code snippet for getting the provider:

/** Create a provider with AE Services server CTI-link, user name and
password.
*
* @param String serv – AE services server cti-link selected by the
application.
* @param String login – user name for authentication purposes
* @paramString password – password for authentication purposes
* @throws Exception
*/
try
{
myprovider = peer.getProvider(myService + ";login=" + login + ";passwd=" +
password);
System.out.println(serv + ";login=" + login + ";passwd=" + password);
}
catch (Exception ex)
{
System.out.println("Exception during getting services: " + ex);
}

The getProvider() method of the JtapiPeer object returns an instance of a Provider object.

The method takes a single string as an argument. This string contains a <service name>, a
login=xxxx; and a passwd=yyyy; along with other optional parameters separated by semi-colons.
The <service name> is the name of the service that the application wishes to utilize (typically one
of the services returned by the getServices() API). The login=xxxx; is the account that the
application will use for authentication and authorization purposes. The passwd=yyyy; provides the
password for the login that is provided. An example of the argument to the getProvider() method
is as follows:
AVAYA#CMPROD#CSTA#AESPROD;login=appaccount;passwd=Passw0rd;
As per the syntax given above, <service name> is mandatory and each optional argument pair
that follows is separated by a semicolon. The keys for these arguments are Avaya
implementation specific, except for two standard-defined keys, described below:

1. login: provides the login user name to the Provider.

2. passwd: provides a password to the Provider.

JTAPI now also allows programmatic specification of TSAPI Service Host Machine. It supports by
this by providing an additional optional keyword argument “servers=X” or “servers=X:P” permitted
to be included in the semi-colon separated list of keyword arguments required for the
JtapiPeer.getProvider() API call. More than one server can be provided by comma separating the
entries e.g. “servers=X:P,Y:P1

myprovider = peer.getProvider(myService + ";login=" + login +
";passwd=" + password + “;servers=135.8.1.2:450"); // ":450" optional

Following is the syntax of the getProvider() method:

public Provider getProvider(java.lang.String providerString)

Application Enablement Services JTAPI Programmer’s Guide Page 28 of 86

If the argument providerString is null, the getProvider() method returns a default Provider as
determined by the JtapiPeer object.

4.2 Catching Exceptions
Each service request may generate throw an exception; therefore the JTAPI application must be
prepared to catch exceptions with a try/catch block around service requests

The following diagram indicates the hierarchy of expected telephony related exceptions that may
be thrown by this implementation.

Exceptions of the pattern Tsapi*Exception that extend the standard JTAPI specification’s
exceptions have an implementation specific error type and error code (eg.
TsapiInvalidStateException, TsapiInvalidArgumentException).

Error types include

• ACS (for ACS related exceptions)

• CSTA (for CSTA related exceptions)

• JTAPI (In case of failure to meet method specific pre-conditions)

• Internal (for internal implementation specific exceptions)

Application Enablement Services JTAPI Programmer’s Guide Page 29 of 86

When the errorType is ACS or CSTA, the errorCode will contain the Tsapi ACS or CSTA error
code which is documented in the Troubleshooting section of the Telephony Services
Administration and Maintenance document.

Most exceptions are checked exceptions and will be documented in the method signature, forcing
client code to handle it. Please refer to the javadoc of these checked exceptions for more
information.

The table below lists the runtime exceptions that this implementation may throw. These are
unchecked, because a client cannot conceivably take corrective action on the fly in these
conditions.

Exception Location Potential causes and solutions

 ASN1Exception Multiple Indicates that an IO exception occurred while
encoding/decoding ASN data types

 TsapiPropertiesException JtapiPeer.getServices()

JtapiPeer.getProvider()

Indicates that an error was encountered
while processing the TSAPI Properties
configuration file (TSAPI.PRO).

Please ensure that your TSAPI.PRO file is a
valid INI file and the alternate Tlink entries
are syntactically and semantically valid.

 TsapiSocketException Multiple Informs applications that a socket IO error
has occurred between the JTAPI client and
the AE server

 TsapiUnableToSendException Multiple Informs applications that the provider is in
OUT_OF_SERVICE state and is unable to
process requests

 ProviderUnavailableException JtapiPeer.getProvider() Informs an application that a provider cannot
be created for the given provider string

TsapiPlatformException Multiple API’s that throw this exception are
documented to do so via their javadoc throws
clause. Please refer to the API’s javadoc
before using it.

In addition this exception may be thrown in
the following cases

• If a confirmation event is not
received from TSAPI for any CSTA
request issued

• If an ACS/CSTA error occurs

• If the creation of the concrete
implementations of Call, Terminal,
Address or Trunk fails

It is recommended that the application catch and log all possible exceptions since this will be an
important source of information for debugging the application.

Application Enablement Services JTAPI Programmer’s Guide Page 30 of 86

4.3 Change from “observer” to “listener” paradigm
With this release, the Avaya JTAPI implementation has deprecated the various observer
interfaces available for handling JTAPI events and introduced support for listener interfaces .

Listeners have the same content as Observers. The principal motivation for the change is to keep
up with the changes in the Java SDKs and communities; in this case, the shift away from the
Observer pattern and toward the Listener pattern.
Such a change simplifies the client code, which does not have to implement conditional
statements to cycle through events at runtime; the appropriate listener callback (which contains
client logic) is automatically called by the JTAPI library.

JTAPI 1.4 Listeners are different from JTAPI 1.2 Observers in the following ways:

• EVENTS MOVED UP A PACKAGE – JTAPI is organized into 6 basic packages:
o core (javax.telephony),
o callcontrol (javax.telephony.callcontrol),
o callcenter (javax.telephony.callcenter),
o phone (javax.telephony.phone),
o mobile (javax.telephony.mobile) and
o private (javax.telephony.private).

In JTAPI 1.2, events are defined for each basic package; the events for each are defined
in a sub-package called X.events (e.g. javax.telephony.events for the core package
events). In JTAPI 1.4, the interfaces which define the events are moved “up” out of the
“events” sub-packages and into the basic package. This was done to help avoid
confusing the events. So while in JTAPI 1.2, the interface javax.telephony.events.Ev
represents the superclass of all Observer events, in JTAPI 1.4 the interface
javax.telephony.Event represents the superclass of all Listener events.

• EXPANDED NAMES – In JTAPI 1.2, events all inherit from the root interface “Ev”

(javax.telephony.events.Ev); all Observer events end in “Ev”; generally the first
component of the event name is an abbreviation (e.g. Provider observer events start with
“Prov”). In JTAPI 1.4, Listener events all inherit from the root interface “Event”
(javax.telephony.Event); all Listener events end in “Event”; generally the first component
of the event name is a full name (e.g. Provider listener events start with “Provider”).

• FEWER EVENT INTERFACES – the JTAPI mobile community objected to the many

interfaces defined in the JTAPI 1.2 specification. In order to meet their memory
constrained needs, the number of interfaces was reduced in the listener hierarchy. In the
new scheme, a group of events were all represented by a single interface; each “old”
event was then represented solely by the event’s ID.

• A METHOD FOR EACH EVENT – the Listener pattern calls for there to be a method

named to match each kind of event, and for that event only to be delivered to that
method. When the JTAPI middleware provider provides classes called adapters, or
classes which provide a default “do-nothing” implementation for a Listener interface, then
this makes it easy for application developers to write very simple Listener objects.

• META EVENTS GIVE WARNING ABOUT CALLS – Meta events were added to JTAPI

1.4. JTAPI already had the concept of a meta event code (Ev.getMetaCode) and new
meta event flag (Ev.isNewMetaEvent). The former gave a hint as to the larger process
that led to these small grained events; the latter gave an indication as to which
sequences of JTAPI events were, together, generated because of a single outside
stimulus (like the receipt of a CSTATransferredEvent). This one item (sending actual
MetaEvents) represents the only new real content for JTAPI 1.4 Listener support, and it is
a modification of something JTAPI already provides (the meta code and new event flag
data). In 1.2, the application would have to invoke the ‘isNewMetaEvent’ flag to identify a

Application Enablement Services JTAPI Programmer’s Guide Page 31 of 86

batch of JTAPI events that corresponded to a higher-level operation. In 1.4 instead, meta
events are defined in pairs, eg. CallListener.singleCallMetaProgressStarted() and
CallListener.singleCallMetaProgressEnded(). For more information, please refer to
Javadoc for javax.telephony.MetaEvent

4.4 Requesting notification of events
Each individual change to a JTAPI object is reported by an event sent to the appropriate Listener
(or Observer). These changes could be as a result of JTAPI receiving an unsolicited event from
AES (CSTADeliveredEvent, CSTAHeldEvent), or receiving a synchronous/asynchronous
response to action requested (eg. Transfer a call, Snapshot a call to get latest status). A JTAPI
application can choose to be notified of events by implementing and adding listeners.

To listen for certain types of events, an application must:
1. Implement a listener.
2. Add the listener.

Note:

1. Avaya recommends that the JTAPI application use a different listener implementation
instance for each JTAPI object. In other words, applications should not re-use the same
listener instance for any JTAPI object (Call/Terminal/Address). If applications do use the
same listener instance on all devices, they might still get all the events, but the
CSTACause (obtained using getCSTACause API of TsapiCallEvent/CallEventImpl) might
not represent the value which the application expects..

2. Once the application receives an event, release the event thread immediately and
continue with event processing on a different thread. If this recommendation is not
adhered to, it could drastically reduce the performance of the JTAPI application. This is
because the JTAPI application will not be notified of other events until the previous
event’s callback method is complete.

Each event triggers a specific callback method in a listener. Listener implementations provide a
way for your application to respond to each event. For every listener, Avaya also provides an
adapter class which provides a default implementation for each callback method which ignores
the received event.
An application developer can extend this abstract adapter with his own concrete implementation
and override only the callbacks he is interested in. Extending this adapter (instead of directly
implementing the listener) allows the application developer to define only the callbacks he is
interested in and delegate the rest to the default implementation in the adapter class. This
simplifies the client application’s listener code.

Provided below is a list of Listeners that are supported. Also included is the name of the adapter
class (for each Listener), provided by Avaya.

JTAPI Listener interface Avaya JTAPI’s Adapter class
Package javax.telephony Package com.avaya.jtapi.tsapi.adapters
AddressListener AddressListenerAdapter
CallListener CallListenerAdapter
ConnectionListener ConnectionListenerAdapter
ProviderListener ProviderListenerAdapter
TerminalConnectionListener TerminalConnectionListenerAdapter
TerminalListener TerminalListenerAdapter

Package javax.telephony.callcenter
ACDAddressListener ACDAddressListenerAdapter
AgentTerminalAddressListener AgentTerminalAddressListenerAdapter

Application Enablement Services JTAPI Programmer’s Guide Page 32 of 86

Package javax.telephony.callcontrol
CallControlAddressListener CallControlAddressListenerAdapter
CallControlCallListener CallControlCallListenerAdapter
CallControlConnectionListener CallControlConnectionListenerAdapter
CallControlTerminalConnectionListener CallControlTerminalConnectionListenerAdapter
CallControlTerminalListener CallControlTerminalListenerAdapter

Package javax.telephony.privatedata
PrivateDataAddressListener PrivateDataAddressListenerAdapter
PrivateDataCallListener PrivateDataCallListenerAdapter
PrivateDataProviderListener PrivateDataProviderListenerAdapter
PrivateDataTerminalListener PrivateDataTerminalListenerAdapter

The list of specific listener registration methods that are supported is given in the table below.
Note that Avaya’s implementation of JTAPI does not support anything in the Phone package or
the Mobile package; the same applies to Observers, Listeners and events in the Media package.

ACDAddress.addListener()
Address.addCallListener()
AgentTerminal.addListener()
CallCenterCall.addListener()
CallControlAddress.addListener()
CallControlCall.addListener()
CallControlConnection.addListener()
CallControlTerminalConnection.addListener()
CallControlTerminal.addListener()
Address.addListener()
Call.addListener()
Provider.addListener()
Connection.addListener()
TerminalConnection.addListener()
Terminal.addListener()
Terminal.addCallListener()

Observers:
Avaya’s JTAPI implementation supports Observers as well. Since they have been deprecated, it
is recommended that future applications use Listeners.

4.5 Call Control – Basic Telephony operations
This section covers a few basic telephony operations that can be performed in JTAPI. It can be
used to create larger applications covering complex scenarios.

4.5.1 Detecting an incoming call
The destination Connection state changes to CallControlConnection.ALERTING when the
destination Address is being notified of an incoming call. This change is signaled to the
application by invoking the CallControlConnectionListener implementation’s connectionAlerting()
method.

The following code snippet shows the implementation of the call detection process.

Application Enablement Services JTAPI Programmer’s Guide Page 33 of 86

//implementation of javax.telephony.callcontrol.CallControlConnectionListener
public void connectionAlerting(CallControlConnectionEvent event) {

 Call call = event.getCall();

 String callingDeviceID = null;

 String calledDeviceID = null;

 if(event.getCallingAddress() != null)
 {
 callingDeviceID = event.getCallingAddress().getName();
 }

 if(event.getCalledAddress() != null)
 {
 calledDeviceID = event.getCalledAddress().getName();
 }

 System.out.println("Incoming call from " +
 callingDeviceID+ " to " + calledDeviceID);
 }

4.5.2 Answering a call

4.5.2.1 Triggering Answer from the Application
An incoming call can be answered by using the answer() method of the TerminalConnection object. The
TerminalConnection object can be retrieved by using the getTerminalConnection() method of the
Connection object. The getConnections() method of the Call object can be used to get the array of
Connection objects associated with a Call.

When a call is answered, the Connection state changes from CallControlConnection.ALERTING to
CallControlConnection.ESTABLISHED

A sample code snippet for answering the call at a particular TerminalConnection is shown below.
 Call mycall;
 Address myStationAddress; // Address for the station extension
 Terminal myStationTerminal; // Terminal for the station extension

 public void answerCall() throws Exception
 {
 Connection localConn = null;
 TerminalConnection[] terminalConns = null;

 // Get all the connections related to this call object
 Connection connection[] = this.mycall.getConnections();
 if(connection == null)
 {
 // If connection array is null, there are no connections
 //associated with the call, this can happen if Call is no
 //longer ACTIVE. This can happen if there is a race condition
 //with a disconnect.
 System.out.println("There are no connections associated with "+
 "the call");
 return;
 }

 for(int conn_index = 0; conn_index < connection.length; conn_index++)

Application Enablement Services JTAPI Programmer’s Guide Page 34 of 86

 {
 // get the connection object
 localConn = connection[conn_index];
 // find the Address for the station extension from where
 //the call needs to be answered
 if(localConn.getAddress().equals(myStationAddress)){

 //get the terminal connections for the connection
 terminalConns = localConn.getTerminalConnections();
 if(terminalConns == null){
 System.out.println("No valid TerminalConnection found.");
 return;
 }

 for(int term_conn_index = 0; term_conn_index <
 terminalConns.length; term_conn_index++){

 TerminalConnection termConn =
 terminalConns[term_conn_index];
 // find the Terminal for station extension from where
 //the call needs to be answered
 if(termConn.getTerminal().equals(myStationTerminal)){

 try{

 // Answer the call at the specified
 // terminal connection.
 if(termConn.getState()==
 TerminalConnection.RINGING){
 termConn.answer();
 }
 }
 catch(Exception e){
 System.out.println("Exception occurred " +
 "during Answer Call: " + e.getMessage());
 return;
 }
 return;

 }// End of if
 }// End of for
 }// End of if
 }// End of for
 }

4.5.2.2 Events Received When a Call is Answered
When a call is answered, either manually or programmatically, the state of the destination
Connection changes from CallControlConnection.ALERTING to
CallControlConnection.ESTABLISHED. If the application has registered a
CallControlConnectionListener for either the Terminal or Address of the originating or destination
station extension, the listener implementation’s connectionEstablished() method will be invoked.
The event will contain information for the destination Connection.

The sample code snippet shown below demonstrates how to handle the
CallCtlConnEstablishedEv event.

Application Enablement Services JTAPI Programmer’s Guide Page 35 of 86

//implementation of javax.telephony.callcontrol.CallControlConnectionListener
 public void connectionEstablished(CallControlConnectionEvent event) {

 Connection conn = event.getConnection();

 System.out.println("Connection for Address " +
 conn.getAddress().getName() + " is in " +
 "Established state.");

 // Add code to handle connection established event here
 }

4.5.3 Disconnecting a call

4.5.3.1 Triggering a disconnect from the application
During an active call, the Connection is in one of the following states:

• Connection.INPROGRESS
• Connection.ALERTING
• Connection.CONNECTED

The state of the connection changes to the Connection.DISCONNECTED state after the
connection is disconnected, say when a user drops from an active call.

In order to disconnect a Connection programmatically, the application needs to call the
disconnect() method of the Connection object.

The following code snippet shows how to use the disconnect() method to disconnect a call.

 // The reference to the Provider object is obtained during
 //application initialization
 Provider myProvider;
 String myAddressName = "40061";
 Connection localConn = null;
 Address address = myProvider.getAddress (myAddressName);
 Connection connection[] = address.getConnections();
 /* When there is more than one call at the address, then the
 * following code selects the first connection in the
 * CONNECTED state.
 */
 for (int connectionIndex = 0; connectionIndex <
connection.length;
 connectionIndex++){
 Connection conn = connection[connectionIndex];
 int state = conn.getState();
 if (state == Connection.CONNECTED){
 localConn = conn;
 break;
 }
 }
 //cannot locate a connection in Connection.CONNECTED state with
 // the specified Address in it.
 if(localConn == null)
 return;

 try{
 localConn.disconnect();

Application Enablement Services JTAPI Programmer’s Guide Page 36 of 86

 }
 catch (Exception e){
 System.out.println("Exception occurred during disconnecting
" +
 "the Connection: " + e.getMessage());
 }

4.5.3.2 Events received when a Connection is disconnected
If the application has registered a CallControlConnectionListener for either the Terminal or
Address of the originating or destination station extension, the listener implementation’s
connectionDisconnected() method will be invoked. The event will contain information for the
destination Connection. After receiving this event, the associated Connection moves to the
Connection.DISCONNECTED state.

4.6 Getting DNIS, ANI information for a call
When the application receives listener events, it can invoke ‘getCallingAddress()’ to obtain ANI
and ‘getCalledAddress()’ to obtain the DNIS associated with the call. If the call was received over
trunks, then the application can cast the event to a com.avaya.jtapi.tsapi LucentV5CallInfo and
obtain OriginalCallInfo from it. From the OriginalCallInfo invoke the ‘getCallingDevice()’ to obtain
ANI and ‘getCalledDevice()’ to obtain the DNIS

4.7 Cleanup
It is important to free resources when they are no longer needed. For example, if the application
is not interested in receiving any more events, it can remove the listener from the device. The
application should also shutdown the provider, when it does not need it any more. This will allow
the socket connection to AES to be released and thus free up valuable system resources.

4.8 Security Considerations
This section covers the security measures that the JTAPI library takes in order to protect the
application.

4.8.1 Authorization Measures
AE Services optionally enforces an authorization policy as specified in the Security Database
(SDB) to ensure that only authorized users can monitor and control a given device.
The SDB allows an administrator to give a user restricted access by allowing control of a specific
device or list of devices. An administrator can also allow a user to monitor/control any device by
granting them "Unrestricted Access". However in the latter case, any provider API invoked to
obtain a list of addresses will fail. For eg. CallCenterProvider.getACDAddresses() will fail. For any
such API, the application should use a CTI user having restricted access.

The administrator can also disable the SDB entirely, which turns off all authorization enforcement
and allows any user to monitor or control any device.

 Please see the AE Services Administration and Maintenance Guide, 02-300357, for more
information about SDB administration.
 (A CTI user can be administered for "Unrestricted Access" via the "Edit CTI User" Web page AE
Services OAM)

Application Enablement Services JTAPI Programmer’s Guide Page 37 of 86

4.8.2 Transport Security
JTAPI can establish either a secure (SSL) or a non-secure (non-SSL) TSAPI session connected
to the given Telephony server. The type of session returned is based on the protocol in the Tlink
name. For protocol "CSTA", a non-secure session is created. For protocol "CSTA-S", a secure
session is created.

For example:

This link will result in a non-secure session - AVAYA#CMSIM#CSTA#AESSIM
This link will result in a secure session with AES - AVAYA#CMSIM#CSTA-S#AESSIM

To establish a secure session, the JTAPI client library will need the keystore properties to be
configured (see JTAPI.PRO properties)

4.9 Heartbeats
JTAPI has a heartbeat monitoring mechanism, whereby messages sent at regular intervals, by
the AES, are received by it. This provides a way for the application to verify that the AES is
operational even if there is no other activity from the application. JTAPI application can adjust the
heartbeat interval using the ITsapiProvider.setHeartbeatInterval() method.

If the JTAPI library misses 2 heartbeats, it shuts down the provider. If the application has
ProviderListener registered, then it will receive notification about this event.

In addition to this heartbeat mechanism (which monitors the link between JTAPI library and AES),
JTAPI also monitors the link between AES and the Communication Manager (CM). If that link
goes down, JTAPI receives a notification from AES and the provider state is set to
OUT_OF_SERVICE. This feature is available from release 5.2 onwards.

4.10 JTAPI Applets
This section explains the setup required for running JTAPI Applets in a browser. It describes the
steps for making the applet classes available in Internet Explorer (6.0 or later). In this
configuration, the clients that will access the web server do not need to install the JTAPI software.

1. Copy the avayaprca.jks, the ecsjtapia.jar and the tsapi.pro files to the directory on the
Web server that will host the web page (all files should be in the same directory).

2. Edit the tsapi.pro file to include the TCP/IP addresses or host names of the AE Servers
that will be used. The default port number is 450.

3. “trustProxy = true” – the Java plug-in must have this system property value. To confirm
this, say in InternetExplorer, go to Tools->Sun Java Console, and then in that window
type the letter “s” – it will say “Dump system and deployment properties”. Under the
system properties, confirm “trustProxy = true”.

5. Compiling and debugging

5.1 Installing Java
The java core packages need to be installed separately. Please download and install the Java
installation appropriate for your operation system from the Sun Java website
(http://www.java.com/getjava/).

5.2 Compiling and running
Compiling a test program can be done via the operating system’s command line interface or via a
development environment like Eclipse.

In order to compile your application in any case, you need to ensure that

• You are using a JDK 1.5 or higher version of Java

• The ecsjtapia.jar file from the SDK is in your CLASSPATH.

5.2.1 Compiling using the command line interface (CLI)
Installing Java will install the tools “java” and “javac” in your system PATH automatically on
windows. On Linux, soft linking of /usr/bin/java and /usr/bin/javac to your installation may be
required. Please read the installation instructions posted on the Sun website.

5.2.1.1 Checking the Java version
Please check the version used by typing “java –version”. As mentioned above, a version greater
than 1.5 should be used

5.2.1.2 Compiling a simple application
The Windows compile command may look something like this

D:\jtapi-sdk-5.2.0.dev>javac -classpath lib\ecsjtapia.jar *.java

This will compile all java files in the current directory

The Linux equivalent would be below

[jdoe@ linux-box jtapi-sdk-5.2.0.dev]# javac -classpath lib/ecsjtapia.jar

*.java

5.2.1.3 Compiling a complex application
Ant is the recommended build tool for any moderately complex application.

This tool needs the system variable JAVA_HOME set to point to the java installation you wish to
use. Please ensure that this variable points to a Java Development Kit (JDK) and not a Java
Runtime environment (JRE)

On windows an indicative command to set this variable will be

Application Enablement Services JTAPI Programmer’s Guide Page 39 of 86

D:\jtapi-sdk-5.2.0.dev>set JAVA_HOME= C:\Program Files\Java\jdk1.5.0_10

The Linux bash equivalent would be below. Please use the appropriate syntax of your shell

[jdoe@ linux-box jtapi-sdk-5.2.0.dev]# export

JAVA_HOME=/usr/java/jdk1.5.0_10

Please refer to

• The build script (ant.bat or ant.sh depending on your OS variant) for an example of how
to use Ant from the command line. The above scripts set the path to use the ant 1.7.1
distribution bundled with the SDK. This distribution is the same as the distribution 1.7.1
available at http://ant.apache.org/ except that it uses extra ant contrib. tasks defined at
SDK_PATH/ant/lib/ant-contrib-1.0b1.jar.

• The build file build.xml at SDK_PATH/sampleapps/bin for an example of how to compile
an application using ant

5.2.1.4 Running a simple application
The Windows run command is similar to the compile command except

The “java” executable needs to be used instead of “javac”

Log4j needs to be in the CLASSPATH. By default, the log4j jar in JTAPI_SDK_PATH/lib is
included in the manifest of ecsjtapia.jar. If the log4j jar is not located in the same directory as
ecsjtapia.jar, it needs to be passed in the CLASSPATH.

A class with a valid main() entry point needs to be specified.

 D:\jtapi-sdk-5.2.0.dev>java -classpath lib\ecsjtapia.jar;log4j-
1.2.12.jar;.;conf TestApplication

D:\jtapi-sdk-5.2.0.dev>

Assuming that a class TestApplication.java exists in the current directory and has an entry point
of the signature “public static void main(String[] args)”, the above command will run that class.

Please note the contents of the CLASSPATH used. It contains

• The Avaya implementation library (ecsjtapia.jar)

• The Log4j library, (on which ecsjtapia.jar depends for logging)

• The current directory (assuming that TestApplication.java has been compiled to this
directory, i.e. The current directory was the build directory for compiling
TestApplication.java)

• The conf directory (so that TSAPI.PRO and log4j.properties are included in the
CLASSPATH)

The linux equivalent would be below

Application Enablement Services JTAPI Programmer’s Guide Page 40 of 86

[jdoe@ linux-box jtapi-sdk-5.2.0.dev]# java -classpath
lib/ecsjtapia.jar:log4j-1.2.12.jar:.:conf TestApplication

5.2.1.5 Running a complex application
Similar to compilation, Ant is the recommended tool for running any moderately complex
application. Please see the ant compilation setup section for information regarding setting up ant.
Please refer to the build file build.xml at SDK_PATH/sampleapps/bin for an example of how to
run an application using Ant.

5.2.1.6 Deploying a simple application
Java applications are traditionally deployed as jars. Your application can be bundled as a jar with
the class-path attribute including ecsjtapia.jar and a main-class attribute pointing to your main
class. Please remember to bundle the log4j jar and respective configuration files i.e. TSAPI.PRO
and log4j.properties along with your application.

Assuming TestApplication.class as the main class, an example Manifest.mf file would be
Class-Path: ecsjtapia.jar log4j-1.2.12.jar

Main-Class: TestApplication

The jar can then be created using the “jar” tool included with the JDK. A sample command on
windows would be
D:\jtapi-sdk-5.2.0.dev> jar -cfm testapp.jar Manifest.mf *.class
log4j.properties TSAPI.PRO

This command will create a jar testapp.jar using the Manifest.mf specified and containing all class
files as well as the configuration files log4.properties and TSAPI.PRO in the current directory

Please ensure that ecsjtapia.jar, testapp.jar and log4j-1.2.12.jar are in the same directory when
run. An indicative run command would be
D:\jtapi-sdk-5.2.0.dev> java –jar testapp.jar

On Linux, you may need to soft link the jar tool before usage. The jar creation and run commands
are similar to the windows commands above.

5.2.1.7 Deploying a complex application
Binaries are best created as part of the build script using Ant in this case. Please refer to the Jar
task of Ant at http://ant.apache.org/manual/CoreTasks/jar.html for information on how to create
jars

5.2.2 Compiling using Eclipse
This can be done by setting up a java project in eclipse. Please search for “New Java Project
Wizard” in eclipse for instructions on how to do so.

The following instructions apply to Eclipse 3.2

• Select File > New > Project > Java Project from the Eclipse menu and click “Next”

• Enter a name for the project and ensure that a JVM > 1.5 is used for this project.

Application Enablement Services JTAPI Programmer’s Guide Page 41 of 86

• Go to the libraries tab and click “Add External Jars”. Browse to the directory
SDK_PATH/lib and select ecsjtapia.jar and log4j-1.2.12.jar. Click “Finish”

• Copy a properly configured TSAPI.PRO and log4j.properties from SDK_PATH/conf to a
source folder in your eclipse project

• Create and your client application in this project. Please see the section “Writing a client
application” for more information.

Eclipse provides wizards to create jars out of project artifacts. Please search the eclipse
documentation for “Creating a new Jar file” for more information on this procedure.

5.3 Debugging

5.3.1 Client-side debugging
Sample code can be debugged by opening the code in an IDE and stepping through it with a
debugger. However, debugging the JTAPI implementation involves configuring logging at an
appropriate level, executing the scenario and examining the generated logs

Following is a walkthrough on how to configure logging for the Avaya JTAPI implementation.

JTAPI 5.2 supports log4j based logging. JTAPI application developers can now control logging in
2 ways as described in below. JTAPI uses com.avaya.jtapi.tsapi as the internal logger. JTAPI
application developers are advised not to use this logger but use com.avaya.jtapi as the logger to
control JTAPI logging. It is recommended that application developers use the second method
mentioned for controlling JTAPI logging

5.3.1.1 Using TSAPI.PRO
JTAPI logging can be controlled by setting the properties in TSAPI.PRO. The log4j level can be
controlled by setting the debugLevel property in TSAPI.PRO. The values for the property
debugLevel must be between 0-7.

The “altTraceFile”, “traceFileCount” and “traceFileSize” keys control trace logging.

Similarly, the “errorFile”, “errorFileCount” and “errorFileSize” control error logging.

Please refer to the section on Configuring the JTAPI client library for more information regarding
both debugLevel and these trace and error logging attributes.

The exact behavior of JTAPI logging will depend on the properties that have been set in
TSAPI.PRO file. Since the trace and error parameters mentioned above are not mandatory,
please keep in mind the following points while setting properties

• If only debugLevel property is set to a value greater than 0 and no other trace or error
logging properties are present then JTAPI will create a console appender and log all
details to the console

• If debugLevel is set to a value greater than 0 and an errorFile is mentioned then JTAPI will
log at a level corresponding to debugLevel and also turn on error logging to the file that is
mentioned as value for errorLogging

• If debugLevel is set to zero and errorFile is set then log4j level will be set to ERROR and
error logs will be sent to the error file. Setting errorFile property will override debugLevel
property in this case.

5.3.1.2 Using a log4j.properties file
JTAPI application developers can also control logging by specifying a log4j properties file to
control JTAPI logging. Developers are encouraged to use this method to control JTAPI logging.
Please refer to “Configuring the JTAPI client library” for log4j properties files examples.

Application Enablement Services JTAPI Programmer’s Guide Page 42 of 86

5.3.1.3 Controlling logging programmatically
It is also possible to progammatically enable logging via the new
ITsapiProvider.setDebugPrinting(boolean) API.

If no trace appender exists, setting this to true shall create a console appender with a log level of
TRACE. If a trace appender does exist, this setting shall either change the log level to NONE (if
false) or set a log level of TRACE (if true). Error logging shall not be impacted by this API
invocation

5.3.2 Server-side debugging
Server side logs are available at /opt/mvap/logs. The configuration file is
/opt/mvap/conf/tracemask. A common configuration of tracemask would include

trans_serv=0x0001e80e

asailink=0x0001e00e

CVLAN=0x0000800e

TSAPI=0x00000c3f

DLG=0x0001e7fe

OAM=255

Scripts=255

Please see the Avaya MultiVantage™ Administrationand Maintenance Guide guide to learn more
about the server’s logs.

5.3.3 Improving performance
Many different factors may potentially affect the performance of your system. A JTAPI system has
four main parts that may be affected:

• The AE Services server
• Communication Manager
• The network
• The JTAPI client application

An excessive load on any of these may slow down the overall system. Please check the
following.

On the AE Services server:

• Ensure that your AE Services server machine meets the minimum requirements specified
in the appropriate Avaya MultiVantage™ Application Enablement Services Installation
andUpgrade Guide for the offer you have purchased (bundled server or software only).

• Avoid running any other applications on the AE Services server machine.

• Check that the AE Services server’s Linux operating system resources are tuned
correctly for your application needs. The server software makes no assumptions
concerning your application needs and therefore does not tune the kernel for you. See
the Linux documentation found at http://www.redhat.com/docs/manuals/linux/RHL-9-
Manual.

• Update the Linux kernel with the latest updates available.

Application Enablement Services JTAPI Programmer’s Guide Page 43 of 86

On the Communication Manager:
Ensure that Communication Manager is properly configured for your network and business
needs. Misconfigured Communication Manager elements can lead to performance issues.

On the network:
Ensure that your network traffic is properly balanced. One way to do this professionally is to ask
Avaya to perform a network assessment. There is also a VoIP Readiness Guideavailable from
the Avaya Support Centre (http://www.avaya.com/support). For more information about improving
the performance of your network, see the “Network Quality and Management” section of
Administration for Network Connectivity for Avaya Communication Manager (555-233-504).

On the client
If your application has large memory requirements, consider increasing the memory available to
the JVM (using the –Xmx attribute for a Sun JVM).
If many threads are required consider decreasing the default thread stack size (using the –Xss
flag on Sun JVMs). Sun's JDK 1.4 allocates about 256K of address space per thread while JDK
1.5, seem to allocate about 1M of address space per thread.

5.3.4 Getting support
Development support is only available through Avaya's Devonnect Program at this time. As an
Innovator/Premier/Strategic level member of the DevConnect Program, technical support
questions can be answered through the DevConnect Portal at www.avaya.com/devconnect.
As a Registered member of the program, support is not available. If you require support as a
Registered member, you can apply for a higher level of membership that offers support and
testing opportunities through the DevConnect Portal. Membership at the
Innovator/Premier/Strategic level is not open to all companies. Avaya determines membership
status above the Registered level.

Application Enablement Services JTAPI Programmer’s Guide Page 44 of 86

6. Using the JTAPI Exerciser
The JTAPI SDK ships with an "Exerciser” tool that is very useful for developers just learning
about the API and its capabilities. The Exerciser allows trial of all the capabilities of Avaya’s
implementation of JTAPI without having to write any code.

This section explains the most common steps that would be performed each time the exerciser is
used. In general, you would do the following

• Create a Provider instance

• Create one or more address objects that you are interested in monitoring.

• Add a call Observer on the address object to get events informing about the calls on this
address.

• Make a call to the above address.and check the events.

In order to run the Exerciser, you must first ensure that the TSAPI.PRO file in the jtapi-sdk/conf
directory is properly configured to point to the AE server. For further details, see “Configuring
your JTAPI client library”. Next step would be to go to JTAPI_SDK_PATH/tools/bin and run
“ant.sh runJtapiExerciser” or “ant.bat runJtapiExerciser” depending on the platform.

Once the Exerciser is launched, the system will display

Application Enablement Services JTAPI Programmer’s Guide Page 45 of 86

 Your first step will be to acquire an instance of Provider object. You can do this by first acquiring
a JtapiPeer, as your application would do, or you can take a short cut and double click directly on
the “Provider” label. If you take the latter option, the DefaultJtapiPeer will be used.

After clicking on provider label directly, the system will display

Application Enablement Services JTAPI Programmer’s Guide Page 46 of 86

You will have to enter the following information to be able to create a provider :

• Select the appropriate Tlink from the combo box labelled as “Tlink Name” (see Tlink)

• Enter username of an user in the text box labelled as Login.

• Enter password of the same user in the text box labelled as Password.

Click the “OK” button after entering the above information. Once this is done, check the object
tree on the right panel of the exerciser and it should show a node labeled as “provider” under a
node labeled as DefaultPeer. Please refer to the figure below.

Application Enablement Services JTAPI Programmer’s Guide Page 47 of 86

Now that you have a valid provider instance, the next thing is to create an address object.

Let us assume that we want to create an address object for a extension 4701.

Double-click on the “provider1” node in the object tree to launch the provider window and then
from this window, you can select the getAddress() function from the ‘Methods’ menu. Or you can
take a shortcut by clicking on the address label in the JTAPI Object Palette to enter the extension
directly.

After clicking on the address label in the JTAPI Object Palette, the system shows the window as
below.

Application Enablement Services JTAPI Programmer’s Guide Page 48 of 86

Enter the extension 4701 in the textbox labeled as “Device” and then click “ok” button. You should
now see a node labeled “a_4701” in the JTAPI object tree on the right panel of the exerciser.

Now we will add a CallObserver on the address object to be able to get information about the
calls to this address.

To do this, double-click on the “a_4701” node in the Jtapi object tree. This will launch a address
window labeled as “Address:a_4701”. In this address window,click on the menu item labeled as
“Methods “. Click on the first Item “Address” and then click the “addCallObserver()” method.
Please refer to the figure below.

Application Enablement Services JTAPI Programmer’s Guide Page 49 of 86

 Having done this, you now have a CallObserver added to this address. Any events about the
calls to this address will be logged on the address window labeled “Addess:a_4701”.

We now move onto the next step of placing the call to the above address 4701 from an extension,
say 4702.

To do this, you need to create an address and terminal object for the extension. 4702 The
process for creating the address object for 4702 is similar to the one followed for creating address
object for 4701.

To create a terminal object for 4702, click on the label “Terminal” in the JTAPI Object Palette.
This would launch a window as shown below.

Application Enablement Services JTAPI Programmer’s Guide Page 50 of 86

Enter the extension 4702 in the text box labeled as “Device” and click the button “ok”. This would
add a node labeled “t_4702” in the object tree.

The next step is to click on the label “Call” in the JTAPI Object Palette. This would launch a
window labeled provider.createCall() . Click the “ok” button on this window. Now you should see a
node labeled as “call1” in the JTAPI Object tree. Please refer to the figure below.

Application Enablement Services JTAPI Programmer’s Guide Page 51 of 86

Double-click on the node labeled as “call1” in the object tree to launch a menu labeled as
“Call:call1”. In this Menu click on the menu item labeled as “Methods”. From the list that appears,
click on the first item labeled as “Call” and then click on the method labeled as
“connect(Terminal,Address,String)”. This would open a window labeled as Call.connect() as show
below.

Application Enablement Services JTAPI Programmer’s Guide Page 52 of 86

Enter extension 4701 in the textbox labeled as Device.and then click “ok” button.

You should now be able to see JTAPI events in the window labeled Address:a_4701 indicating a
call alerting at extension 4701 as shown below. Scroll down the window to look for other JTAPI
events pertaining to this call.

Application Enablement Services JTAPI Programmer’s Guide Page 53 of 86

The object tree also gets updated with new nodes representing connections and terminal
connections for respective address and terminal objects.

It is now possible to answer the call and do some other API operations like transfer using the
various nodes that are available on the object tree.

The next step is to learn about how to clean up various objects that we created in our previous
operations.

Let us assume we want to clear an object a_4701. To do this, check if you already have the
window labeled Address:a_4701 opened , If not ,double click on the node labeled as “a_4701”.
This will launch a window labeled as Addess:a_4701. In this window click on the menu item
labeled “File “. This will give you a list and then from this list, click on the item labeled as “Destroy
Object”. Once this is done, you should no longer see node labeled as a_4701 in the object tree.
Please refer to the figure below:

Application Enablement Services JTAPI Programmer’s Guide Page 54 of 86

The above process should be repeated for cleaning up other objects in the object tree.

If you want to clear up all the objects in one click , do the following:

Click on the menu item labeled “Tools” in the Exerciser window. From the list that comes up ,
click on the item labeled “Restart Session”. Please refer to the figure below.

Application Enablement Services JTAPI Programmer’s Guide Page 55 of 86

Once this action is completed, there should be no nodes other than the DefaultPeer and the
provider node in the object tree. Please refer to the picture below.

Application Enablement Services JTAPI Programmer’s Guide Page 56 of 86

APPENDIX A – Avaya implementation specific deviations
from the JTAPI specification

Core package implementation details
The following table describes the Core Package interfaces and methods that are specially
implemented.

Interface Method Implementation Notes

Address getTerminals

The implementation of this request relies on the AE Services
Security Database (SDB). If the SDB is not enabled, NULL will
be returned for address.getTerminals() and
terminal.getAddresses(). Without the SDB, there is no listing of
addresses and no information to pass.

Connection disconnect Must be called with Connection in the CONNECTED,
INPROGRESS, ALERTING, FAILED or UNKNOWN state.

JtapiPeer Not applicable

Obtain a JtapiPeer object using the JtapiPeerFactory class. The
TsapiPeer class represents this implementation of the JtapiPeer.
To obtain TsapiPeer, invoke
JtapiPeerFactory.getJtapiPeer(“com.avaya.jtapi.tsapi.TsapiPeer”)

JtapiPeer getServices
Returns an array of service names that can be used to build the
String needed to be passed to JtapiPeer.getProvider(). These
Strings are the AE Server Tlink names.

JtapiPeer getProvider

The providerString parameter to this method must contain an AE
Services Tlink name as well as login and password for user
authentication. The AE server to connect to can also optionally
be passed via this string.

The format of the String is
“<tlink>;login=<loginID>;passwd=<pw>;servers=<server entries>”

Where server entries follows the format

server1:port,server2:port,server3:port

Terminal getAddresses

The implementation of this request relies on the AE Services
Security Database (SDB). If the SDB is not enabled, NULL will
be returned for address.getTerminals() and
terminal.getAddresses(). Without the SDB, there is no listing of
addresses and no information to pass.

Call Center package implementation details
The following table describes the Call Center Package interfaces and methods that either
specially implemented or not supported.

Application Enablement Services JTAPI Programmer’s Guide Page 58 of 86

Interface Method Implementation Notes

ACDAddress getOldestCallQueued Method not supported.

ACDAddress getRelativeQueueLoad Method not supported.

ACDAddress getQueueWaitTime Method not supported.

ACDAddress getACDManagerAddress Method not supported.

ACDManagerAddress getACDAddresses Method not supported.

Agent getAgentID Returns a null string.

AgentTerminalObserver No methods defined.

The AgentTerminalObserver only supports
the AgentTermLoggedOnEv and
AgentTermLoggedOffEv when the state
change is produced through the JTAPI
application. In order to monitor agent
activity (e.g., agents logging on and off
manually), an ACDAddressObserver should
be added to the ACDAddress.

Similarly in case of listeners,
AgentTerminalListener#
agentTerminalLoggedOn and
AgentTerminalListener#
agentTerminalLoggedOff are supported
only when the JTAPI application itself is
logging the agent on and off. To completely
monitor agent activity, please use an
ACDAddressListener

CallCenterCall connectPredictive

The answeringEndpointType parameter is
not supported. The maxRings and
answeringTreatment parameters are
supported. If the Call is observed and the
ACDAddress or AgentTerminal is also call
observed, then two unique Call objects will
be created that are associated with the
same real call. One of the following
methods must be used to determine that
there are two Call objects representing the
same real call.

• If the called address is unique
among all calls, the
Call.getCalledAddress() method
can be used.

• Another way is to use the
UserToUserInfo Avaya
MultiVantage Software server-
specific extension. The application
can send a unique ID in the
UserToUserInfo with the
connectPredictive and this ID will

Application Enablement Services JTAPI Programmer’s Guide Page 59 of 86

be reported in call events for the
ACDAddress or AgentTerminal.
The UserToUserInfo can also be
retrieved directly from the Calls.

In any case, both Call objects and all
Connections and TerminalConnections in
both Calls are valid. Valid requests may be
made of any of the objects.

Currently, only Connection.CONNECTED is
valid as the connectionState parameter. If
Connection.ALERTING is specified, it is
ignored and Connection.CONNECTED is
used.

CallCenterCall getApplicationData Method not supported.

CallCenterCall setApplicationData Method not supported.

PrivateTermEv getPrivateData Method not supported.

RouteAddress registerRouteCallback Only one RouteCallback may be registered
for an Address at a time.

RouteSession selectRoute
Only the first route specified in the
routeSelected parameter is used. The
subsequent routes are ignored.

AgentTerminal setAgents Method not supported.

Call Center Events package implementation details
All events in the Call Center Events package are only sent to the application when an explicit
state change is requested by the application. If the state change occurs via some other interface
(e.g. the agent pushes a button on their telephone), no event will be sent to the application.

Similarly, all callbacks in the CallCenterCallListener, ACDAddressListener and
AgentTerminalListener are sent only when the state change is actively made by the JTAPI
application.

Call Control package implementation details
The following table describes the Call Control Package interfaces and methods that are either
specially implemented or not supported.

Interface Method Implementation notes

CallControlAddress setForwarding

Avaya supports the
FORWARD_UNCONDITIONALLY
forwarding type only when used in
combination with the ALL_CALLS
filter type.

Application Enablement Services JTAPI Programmer’s Guide Page 60 of 86

CallControlAddress getDoNotDisturb

For this method, there is no
distinction between an Address
and a Terminal.
CallControlAddress.getDoNotDistu
rb() and
CallControlTerminal.getDoNotDist
urb() always return equivalent
values.

CallControlAddress setDoNotDisturb

For this method, there is no
distinction between an Address
and a Terminal.
CallControlAddress.setDoNotDistu
rb() and
CallControlTerminal.setDoNotDist
urb() behave the same.

CallControlCall offHook Method not supported.

CallControlCall transfer(String address)

This method is supported with the
following implementation-specific
details:

• the application must call
setTransferController()

• transfer(String) returns a
connection in UNKNOWN
state but followup events
provide state updates

CallControlCall consult(TerminalConnect
ion termconn) Method not supported.

CallControlConnection accept Method not supported.

CallControlConnection reject Method not supported.

CallControlConnection addToAddress Method not supported.

CallControlConnection park Method not supported.

CallControlTerminal getDoNotDisturb

For this method, there is no
distinction between an Address
and a Terminal.
CallControlAddress.getDoNotDistu
rb() and
CallControlTerminal.getDoNotDist
urb() always return equivalent
values.

CallControlTerminal setDoNotDisturb

For this method, there is no
distinction between an Address
and a Terminal.
CallControlAddress.setDoNotDistu
rb() and
CallControlTerminal.setDoNotDist

Application Enablement Services JTAPI Programmer’s Guide Page 61 of 86

urb() behave the same.

CallControlTerminal

pickupFromGroup
(String pickupGroup,
Address
terminalAddress)

Method not supported.

CallControlTerminalConnection join Method not supported.

CallControlTerminalConnection leave Method not supported.

CallControlAddressListener addressDoNotDisturb

Similar to the equivalent observer
behavior described above, this
callback is invoked even if
DoNotDisturb was changed using
CallControlTerminal.setDoNotDist
urb(). For DoNotDisturb, there is
no distinction between an Address
and a Terminal.

CallControlConnectionListener connectionDialing Callback not supported

CallControlConnectionListener connectionOffered Callback not supported

CallControlTerminalConnectionList
ener

terminalConnectionInUs
e Callback not supported

Call Control Events package implementation details
The following table describes the Call Control Events Package interfaces and methods that are
specially implemented.

Interface Method Implementation notes

CallCtlAddrDoNotDisturbEv getDoNotDisturbState

The CallCtrlAddrDoNotDisturbEv event is
sent even if DoNotDisturb was changed
using
CallControlTerminal.setDoNotDisturb(). For
DoNotDisturb, there is no distinction
between an Address and a Terminal.

CallCtlConnDialingEv Not applicable Interface not supported.

CallCtlConnOfferedEv Not applicable Interface not supported.

CallCtlTermConnInUseEv Not applicable Interface not supported.

Media package implementation details
This package is an optional part of the JTAPI specification. Avaya supports only DTMF related
functionality in this package. MediaTerminalConnection.generateDtmf() is supported to send

Application Enablement Services JTAPI Programmer’s Guide Page 62 of 86

DTMF tones and MediaTermConnDtmfEv from the events package is supported to enable an
application to be notified of the DTMF digits dialed. MediaCallObserver is supported to the extent
that an observer implementing this interface is required to be used in order to be notified of a
MediaTermConnDtmfEv event.

Media Events package implementation details
As mentioned above, MediaTermConnDtmfEv is the only media event that is supported.

Although the MediaTermConnDtmfEv interface has been defined as a TerminalConnection event,
the TerminalConnection field will be null. The Call field will be filled in with the call to which the
DTMF digits have been applied. This event is sent only when a DTMF detector is attached to the
call and DTMF tones are detected. The tone detector is disconnected when the far end answers
or "#" is detected. This event is used in conjunction with the Communication Manager-specific
extension LucentRouteSession.selectRouteAndCollect().

In case a listener (more specifically a PrivateDataCallListener) is used, the DTMF digits applied
will be passed as private data via the PrivateDataCallListener.callPrivateData callback. Invoking
getPrivateData() on the parameter passed to this callback will return an instance of
com.avaya.jtapi.tsapi.PrivateDtmfEvent, which will contain the dialed DTMF digits

Private Data package implementation details
The following table describes the JTAPI Private Data package interfaces and methods that are
specially implemented.

Interface Method Implementation notes

PrivateData setPrivateData For this method, the private data Object parameter must
be an instance of TsapiPrivate.

PrivateData sendPrivateData For this method, the private data Object parameter must
be an instance of TsapiPrivate.

Phone package implementation details
No class / interface in this package is supported.

Mobile package implementation details
No class / interface in this package is supported.

Application Enablement Services JTAPI Programmer’s Guide Page 63 of 86

APPENDIX B – Avaya implementation specific
enhancements to the JTAPI specification

Extensions to JTAPI Exceptions
AE Services extensions to the JTAPI exceptions provide more detailed error information than is
defined in JTAPI. These extensions consist of the CSTA and ACS error codes provided by
TSAPI.

For information about Computer-Supported Telecommunications Applications (CSTA) and API
Control Services (ACS) error codes, refer to Avaya MultiVantage Application Enablement
Services TSAPI Programmer's Reference, 02-300545

ACS error codes are defined there in the enum ACSUniversalFailure_t, while CSTA error codes
are defined in the enum CSTAUniversalFailure_t

The javadoc of com.avaya.jtapi.tsapi.ITsapiCSTAUniversalFailure also contains a list of CSTA
failure codes

Extensions to JTAPI Provider events
AE Services defines additional JTAPI Provider events. These events provide more detailed
Provider state changes. These TSAPI Provider states map to JTAPI Provider states as follows:

TSAPI Provider State JTAPI Provider State

ITsapiProvider.TSAPI_OUT_OF_SERVICE Provider.OUT_OF_SERVICE

ITsapiProvider.TSAPI_INITIALIZING Provider.OUT_OF_SERVICE

ITsapiProvider.TSAPI_IN_SERVICE Provider.IN_SERVICE

ITsapiProvider.TSAPI_SHUTDOWN Provider.SHUTDOWN

Application Enablement Services JTAPI Programmer’s Guide Page 64 of 86

Communication Manager Extensions to JTAPI
This table summarizes the Communication Manager features that are available as extensions to
JTAPI.

Feature Name and Description Class or Interface Returned/Used by Methods in Class or
Interface

Advice of Charge - Reports
network charges incurred by
outgoing trunk calls (supported by
G3V5)

LucentChargeAdviceEvent

LucentChargeError

LucentChargeType

LucentV5Provider

Agent Work Mode - Specifies the
overriding mode of the Agent;
affects the cycle of the possibly
occurring Agents states.

G3V5 adds support for: reason
code. (an application-defined
reasonCode (1-9), which may be
specified when the state is set to
Agent.NOT_READY.)

G3V6 adds support for Pending
Work Modes. A JTAPI Application
may request to change an Agent's
state to
Agent.WORK_NOT_READY and
Agent.NOT.READY, and to have
the state change be held "pending"
until all current calls that are active
on the Agent's Agent Terminal are
completed.

G3V7 adds support for expanded
reason codes. (1-99),

Not applicable LucentAgent

LucentAgentStateInfo

LucentV5AgentStateInfo

LucentTerminal

LucentV5Terminal

LucentV5TerminalEx

LucentV5AgentStateInfo

LucentV6Agent

LucentV6AgentStateInfo

LucentV7Agent

Call Classifier Information -
Provides information on call
classifier port usage (namely
available and in-use ports)

CallClassifierInfo LucentProvider

Collect Digits - Allows a route
request to wait for a specified
number of digits to be collected

Not applicable LucentRouteSession

Dial-Ahead Digits - Allows a route
request to place digits in a dial-
ahead buffer Allows a route

 Not applicable LucentRouteSession

Application Enablement Services JTAPI Programmer’s Guide Page 65 of 86

request to place digits in a dial-
ahead buffer

Direct Agent Calls - Allows calls to
be made to and from specific
logged-in ACD Agents Allows calls
to be made to and from specific
logged-in ACD Agents

Not applicable LucentCall

LucentRouteSession

Dropping Resources - Allows
specific switch resources to be
dropped from the call.

Not applicable LucentConnection
LucentTerminalConnection

Flexible Billing - Allows changing
the billing rate for incoming 900-
type calls (supported by G3V5)

 Not applicable LucentV5Call

LucentBillType

Flexible Generation of DTMF
Tones - Enables an application to
specify tone duration and inter-tone
delay duration.

Not applicable LucentV5TerminalConnectionEx

Integrated Directory Name -
Allows the G3 Integrated Directory
Database name to be returned

 Not applicable LucentAddress

LucentTerminal

Predictive call observation -
Allows the application to receive
notice of all call events for the
predictive dial call.

Not applicable LucentV7ACDManagerAddress

Look-Ahead Interflow
Information - Can be used by a
routing server application to
determine the proper destination of
a call May be used by a routing
server application to determine the
proper destination of a call

LookaheadInfo LucentCallInfo

OriginalCallInfo

Extended AgentTerminal
connection information -
Provides information regarding

1. The ACDAddress or
ACDManagerAddress that was an
intermediate endpoint before the
call terminated at the
AgentTerminal.

2. The ACDAddress that this call

Not applicable LucentCallInfo

Application Enablement Services JTAPI Programmer’s Guide Page 66 of 86

was delivered through to the
AgentTerminal.

Lucent Call Information -
Provides Avaya ECS -specific call
information on Call and
CallControlCall events; information
includes delivering ACD,
distributing Address, originating
Trunk, reason for last Call event,
and other information.

G3V5 adds support for: Universal
Call ID, Originator Type, and Flex
Billing Flag. Provides Avaya ECS -
specific call information on Call and
CallControlCall events; information
includes delivering ACD,
distributing Address, originating
Trunk, reason for last Call event,
and other information.

G3V7 adds support for retrieving
the current list of device history
entries for this call and the
distributing VDN (if defined)

LucentCallInfo

LucentV5CallInfo

LucentCallInfo

LucentV5CallInfo

LucentV7CallInfo

Implemented by Lucent call objects, route
session objects, and CallControlCall
events.LucentCallInfo (extended by
LucentCall; extended by LucentV5CallInfo;
extended by CallControlCall events)

Message Waiting Application
Information - Indicates which
types of applications have enabled
message waiting

 Not applicable LucentAddress
LucentAddressMsgWaitingEvent

LucentCallControlAddressMsgWaitingEvent

Network Progress Information -
Contains supplementary call
progress information from the ISDN
Progress Indicator Information
Element.

G3V5 adds support for: trunk.

NetworkProgressInfo

V5NetworkProgressInfo

LucentConnNetworkReachedEvent

Original Call Information -
Contains information about the
original call in conjunction with the
Call.consult() service.

G3V5 adds support for: Universal
Call ID, Originator Type, and Flex
Billing Flag.

OriginalCallInfo

V5OriginalCallInfo

LucentCallInfo

LucentV5CallInfo

Priority Calls – Extends the
equivalent standard API’s to enable
priority calling

Not applicable LucentCall (connect, predictive calling and
consult API’s)

Application Enablement Services JTAPI Programmer’s Guide Page 67 of 86

LucentRouteSession (route selection API)

Selective Listen – Allows control
of listen paths between parties on a
conference call (supported by
G3V5).

Not applicable LucentV5Connection

LucentV5TerminalConnection

Single Step Conference – Adds
another party to a call (added party
does not alert; used mainly for
service observing) (supported by
G3V5).

Not applicable LucentV5Call

Supervisor Assist Calls – Allows
logged-in ACD Agents to place
calls to a supervisor’s extension.

Not applicable LucentCall

Agent Consultation Calls –
Allows logged-in ACD agents to
place consult calls to other agents

Not applicable LucentCall

Supervisor Consultation Calls –
Allows logged-in ACD agents to
place consult calls to a supervisor

Not applicable LucentCall

Fast Connect – Similar to the
standard Call.connect() except that
this API only waits for the
connection for the calling party to
be created before returning

Not applicable LucentCallEx2

Switch Date and Time
Information - Returns the current
date and time from Communication
Manager.

Not applicable LucentProvider

Trunk Group Information -
Provides information on trunk
group usage.

Trunk associates group and
member information with a
connection. If a connection is
associated with a trunk party, then
the application can get trunk group
number and trunk group member
information.

TrunkGroupInfo LucentProvider

LucentV6Connection

LucentTrunk

ITsapiTrunk

Application Enablement Services JTAPI Programmer’s Guide Page 68 of 86

Universal Call ID - A call identifier
that is globally unique across
switches and the public network
(supported by G3V5).

Not applicable LucentV5CallInfo (extended by
LucentV5Call)

User Entered Code - The
code/digits that may have been
entered by the caller through the
G3 Call Prompting feature of the
Collected Digits feature.

UserEnteredCode LucentCallInfo

OriginalCallInfo

User-to-User Information - An
ISDN feature that allows end-to-
end transmission of application
data during call setup/teardown.
UUI can be specified, and will be
made available, accommodating
string values up to 32 characters
long. (96 bytes with G3V8 or
higher)

UserToUserInfo LucentCall

LucentCallInfo

LucentConnection

LucentRouteSession

LucentTerminalConnection

LucentCallInfo

Network Call Redirection - The
Adjunct Route support for Network
Call Redirection capability allows
an adjunct to request that an
incoming trunk call be rerouted
using the Network Call Redirection
feature supported by the serving
PSTN instead of having the call
routed via a tandem trunk
configuration.

The LucentV7RouteSession
interface extends
LucentRouteSession to add the
ability to use the Network Call
Redirection feature of call routing
on Avaya switches. When a
Provider is bound to a ECS switch,
this interface may be used to
access this additional capability.
The route session object which
implements this interface also
implements the ECSCallInfo
interface.

Not applicable LucentV7CallInfo

LucentV7RouteSession

Application Enablement Services JTAPI Programmer’s Guide Page 69 of 86

ISDN Redirecting Number
(Redirecting Number Information
Element presented through
DeviceHistory) - The .ISDN
Redirecting Number for ASAI
Events. Communication Manager
feature will be used by CTI
applications to provide enhanced
treatment of incoming ISDN calls
routed over an Integrated Services
Digital Network (ISDN) facility.

Device History Entry - The
V7DeviceHistoryEntry is an entry
that represents a connection that
was formerly on a call. This
provides equivalent content to the
Avaya TSAPI service
implementation of CSTA3
DeviceHistory parameter (see
ECMA-269 Edition 5, "12.2.13
DeviceHistory"). Note that private
interfaces are defined to enable an
application to use the TSAPI
information (specifically the
ConnectionID).

V7DeviceHistory

V7OriginalCallInfo

LucentV7CallInfo

LucentV7RouteSession

Query Device Name - The private
Query DeviceName service allows
an application to query the switch
to identify the Integrated Directory
name assigned to an extension.
With this version of private data,
when a name has been assigned
to an Attendant station extension,
then an application can use the
getDirectoryName method of the
LucentAddress interface to get the
configured Integrated Directory
name assigned to that attendant
extension.

Not applicable LucentAddress

Application Enablement Services JTAPI Programmer’s Guide Page 70 of 86

Enhanced Get API Capabilities
function - The GetAPICaps
function is enhanced to return the
following information.

• Administered Switch
Version (as administered in
the system parameters
customer options form on
the switch)

• Software Version (the
same software version
string that is shown when a
customer logs into a SAT
for a switch)

• Offer Type (values to be
added in future releases of
TSAPI Service) This value
will be a null string for GAZ
systems. Valid values for
Linux systems include:
sray, seagull, chawk,
chawk-lsp, s8500,
s8500_blade, and
vm_blade.

• Server Type (more values
to be added in future
releases)
This field will be a null
string for DEFINITY
systems. Valid values for
Linux systems include:
isp2100, premio, icc,
laptop, ld380g3,
hs20_8832_vm, hs20,
ibmx305, ibmx306, and
tn8400

Not applicable LucentV7Provider

Expanded universal failure error
codes - The list of universal failure
codes that can be returned in
CSTA UniversalFailure unsolicited
events and confirmation events.
This is useful, for example, for
JTAPI exceptions thrown by the
Avaya implementation which
returns these values.

Not applicable ITsapiCSTAUniversalFailure

Application Enablement Services JTAPI Programmer’s Guide Page 71 of 86

User-to-user information used
specifically for a Q.931/I.451
User-Network Call Control
Message - This form of UUI can be
used to send commands out to an
ISDN network, and subsequently to
an SS7 network if an ISDN/SS7
gateway is used. An object of this
type is initialized with a byte array
value (see constructor) and its
value may be retrieved as a byte
array (see UserToUserInfo). This
information, when available, is
obtained via the
LucentCallInfo.getUserToUserInfo()
method. An instance so acquired
may be classified using
'instanceof'.

Q931UserToUserInfo LucentCall

LucentCallInfo

LucentConnection

LucentRouteSession

LucentTerminalConnection

LucentCallInfo

Connection ID - The ConnectionID
is used to access the contents of a
TSAPI ConnectionID as defined by
Avaya's TSAPI service
implementation.

Not applicable ConnectionID

Added Cause Values - The
LucentEventCause gives the list of
event cause values returned in a
number of contexts by the
underlying Avaya TSAPI service.
Note that 'EC_NONE' through
'EC_VOICE_UNIT_INITIATOR'
values are taken from of the
ECMA-179 'CSTA 1 Services'
specification, and the subsequent
cause value extensions, added
specifically to expose additional
capability, adopted names and
values outlined in the CSTA3
service specification (ECMA-269,
'CSTA 3 Services').

Not applicable LucentEventCause

Application Enablement Services JTAPI Programmer’s Guide Page 72 of 86

Private interface to
RouteUsedEvent returns an
Address - This private interface to
the RouteUsedEvent helps pre-
Avaya JTAPI 3.1 applications
which use the JTAPI 1.2
RouteUsedEvent.getRouteUsed()
method to be adapted to conform
to the JTAPI 1.4 specification with
a one-line code change. The
problem is that the JTAPI 1.4
getRouteUsed method no longer
returns an Address; instead it now
returns a Terminal. In many
scenarios this is a problem
because no Terminal may be used
to represent an off-switch party, so
for those 'routes' this will return
'null'. An Address may be returned
for off-switch parties. To solve this
problem caused by the new return
value, this private interface
includes a new method that returns
what the JTAPI 1.2 method used to
use (an Address), so that it can be
used as a replacement API call.

Not applicable LucentRouteUsedEvent

DTMF Event reporting using
listeners - If a
PrivateDataCallListener type
listener is used, it’s
callPrivateData() callback will be
invoked with an argument of type
PrivateDtmfEvent if a DTMF-tone
has been detected on the
telephone line,

Not applicable PrivateDtmfEvent

Access to expanded range of
reason codes - This interface
extends the LucentV6Agent
interface with features specific to
DEFINITY G3 PBX Driver Version
7 private data. When a Provider is
bound to a DEFINITY switch which
supports V7 private data, this
interface may be used to access
additional capabilities. This
interface specifically provides
access to the ability to set a
broader range of reason codes for

Not applicable LucentV7Agent

Application Enablement Services JTAPI Programmer’s Guide Page 73 of 86

the setState() method. Specifically:
it is an application-defined
reasonCode (1-99) which may be
specified when the state is set to
Agent.NOT_READY or
Agent.LOG_OUT. A zero (0) value
is also allowed, meaning "no
reason".

Access to additional call
capabilities - The LucentV7Call
interface extends LucentV5Call
with additional Avaya features
exposed through the
LucentV7CallInfo interface. When a
Provider is bound to a Avaya CM
switch with PBX Driver Version 7
private data, that interface may be
used to access additional Call
capabilities.

Not applicable LucentV7Call

Access to call information from
DEFINITY with version 7 private
data - The LucentV7CallInfo
interface provides access to call
information from ECS DEFINITY
switches with PBX Driver Version 7
private data. These methods are
implemented on the call object, the
route session object, and on
certain call control call events. For
example, if a
CallControlCallObserver receives a
CallCtlConnAlertingEv, it may be
cast to LucentV7CallInfo to use the
getDeviceHistory() method. These
methods may return null if the
requested data is not available.

Not applicable LucentV7CallInfo

Expanded queries for Avaya
Communication Manager - Adds
queries which give information
about the underlying Avaya
switching platform. Introduced with
TSAPI service PBX Driver Private
Data Version 7, with TSAPI service
on Application Enablement
Services Server 3.1.

Not applicable LucentV7Provider

Application Enablement Services JTAPI Programmer’s Guide Page 74 of 86

Vendor independent private data extensions to JTAPI
The private data extensions to JTAPI assist independent switch vendors in the creation of a
private data package for their switches, or allow application programmers to use or interpret
private data when they are supplied with private data in its raw form (i.e., without an intermediate
private data package.) The following sections describe guidelines for using or interpreting private
data when it is supplied in its raw form.

Initialization of Private Data
In order to use or interpret private data from a particular vendor, the application must specify the
vendor name and the version of the private data that is to be used. The particular format of the
name and version strings used is supplied by the vendor.

The specification of the vendor name and the version of the private data must be done after the
application creates a JtapiPeer but before it creates the Provider. The ITsapiPeer.addVendor()
method allows vendor names and versions to be specified to the application. For example, if a
JtapiPeer has been created (called peer) which is an instance of ITsapiPeer, then:

((ITsapiPeer)peer).addVendor(“Brand X”,”1-3”)

indicates that the application knows how to interpret private data from vendor “Brand X” as well
as versions 1, 2, and 3 of that private data. If the application supports private data produced by
multiple vendors, the application may call addVendor() multiple times before receiving the
Provider.

When a String containing the vendor name and version is passed to JtapiPeer.getProvider(), a
particular Provider will be connected to a single vendor delivering one particular version of private
data. The application determines the connected vendor and version by executing the
ITsapiProvider.getVendor() and ITsapiProvider.getVendorVersion() methods.

Once a particular vendor and version is associated with a particular Provider, this association will
not change for the life of the Provider. If the application wants a different Provider, the application
must call ITsapiPeer.addVendor() again.

Using TsapiPrivate as a JTAPI Private Data Object
Where JTAPI specifies that a private data Object is to be passed in as an argument to a method,
this implementation of JTAPI requires the Object to be an instance of TsapiPrivate. Where JTAPI
specifies that a private data Object is to be returned from a method, in this implementation, the
returned Object is always an instance of TsapiPrivate.

When constructing a TsapiPrivate object to be used with the sendPrivateData() methods,
waitForResponse must be set so that the appropriate action is taken.

• A value of true indicates that the implementation should block sendPrivateData() until a
response is received from the switch. This reponse will be passed back to the application
as the return code from sendPrivateData(). This is equivalent to the TSAPI request
cstaEscapeService().

• A value of false indicates that the implementation should return immediately (with a null)
from sendPrivateData(), without waiting for a response from the switch. This is equivalent
to the TSAPI request cstaSendPrivateEvent().

• When a TsapiPrivate object is passed as an argument to a setPrivateData() method, the
waitForResponse flag is ignored.

Application Enablement Services JTAPI Programmer’s Guide Page 75 of 86

APPENDIX C: TSAPI and JTAPI API level comparisons
The Avaya JTAPI implementation internally delegates to the TSAPI implementation. Hence by
definition, this JTAPI implementation can support only functionality that TSAPI itself supports

The table below documents the TSAPI requests that you can expect to be initiated given a
particular JTAPI API call invocation

JTAPI interface JTAPI method TSAPI request

Call connect cstaMakeCall

Connection disconnect cstaClearConnection

JtapiPeer getServices acsEnumServerNames

JtapiPeer getProvider acsOpenStream

JtapiPeer getProvider cstaSysStatStart

Provider shutdown acsCloseStream

Provider shutdown cstaSysStatStop

Provider getState cstaSysStatReq

TerminalConnection answer cstaAnswerCall

AgentTerminal addAgent cstaSetAgentState

Agent setState cstaSetAgentState

Agent getState cstaQueryAgentState

CallCenterCall connectPredictive cstaMakePredictiveCall

RouteAddress registerRouteCallback cstaRouteRegisterReq

RouteAddress cancelRouteCallback cstaRouteRegisterCancel

RouteSession selectRoute cstaRouteSelectInv

RouteSession endRoute cstaRouteEndInv

CallControlAddress setForwarding cstaSetForwarding

CallControlAddress cancelForwarding cstaSetForwarding

CallControlAddress getForwarding cstaQueryForwarding

CallControlAddress getDoNotDisturb cstaQueryDoNotDisturb

CallControlAddress setDoNotDisturb cstaSetDoNotDisturb

CallControlAddress getMessageWaiting cstaQueryMsgWaitingInd

CallControlAddress setMessageWaiting cstaSetMsgWaitingInd

CallControlCall drop cstaClearCall

CallControlCall conference cstaConferenceCall

CallControlCall transfer cstaTransferCall

CallControlCall consult cstaConsultationCall

Application Enablement Services JTAPI Programmer’s Guide Page 76 of 86

CallControlConnection redirect cstaDeflectCall

CallControlTerminal getDoNotDisturb cstaQueryDoNotDisturb

CallControlTerminal setDoNotDisturb cstaSetDoNotDisturb

CallControlTerminal pickup cstaPickupCall

CallControlTerminal pickupFromGroup cstaGroupPickupCall

CallControlTerminalConnection hold cstaHoldCall

CallControlTerminalConnection unhold cstaRetrieveCall

PrivateData sendPrivateData cstaSendPrivateEvent

The following TSAPI requests are currently un-implemented by this JTAPI implementation.
Therefore, there is no access to the private data for these TSAPI requests.

Service Type TSAPI request

Call Control Services cstaAlternateCall, cstaCallCompletion, cstaReconnectCall

Supplementary Services cstaQueryLastNumber, cstaQueryDeviceInfo

Monitor Services cstaChangeMonitorFilter, FeatureEventReport, CSTACallInfoEvent

Escape Services cstaEscapeServiceConf, cstaEscapeService

Maintenance Services cstaChangeSysStatFilter

The following table maps JTAPI listener callbacks to their deprecated observer events and the
corresponding CSTA unsolicited TSAPI event that caused it to be invoked.

The private data related to these TSAPI events will be contained in the respective event in case
of observer events and will be a part of the first parameter passed to the listener callback in case
of listeners,

TSAPI event JTAPI Observer event JTAPI listener callback

CSTACallClearedEvent CallInvalidEv CallListener#callInvalid

CSTAMonitorEndedEvent CallObservationEndedEv CallListener#callEventTransmissionEnded

CSTADeliveredEvent ConnAlertingEv ConnectionListener#connectionAlerting

CSTAEstablishedEvent ConnConnectedEv ConnectionListener#connectionConnected

CSTAConnectionClearedEve
nt

ConnDisconnectedEv ConnectionListener#connectionDisconnected

CSTAFailedEvent ConnFailedEv ConnectionListener#connectionFailed

CSTADoNotDisturbEvent CallCtlAddrDoNotDisturbEv CallControlAddressListener#addressDoNotDis
turb

CSTAForwardingEvent CallCtlAddrForwardEv CallControlAddressListener#
addressForwarded

CSTAMessageWaitingEvent CallCtlAddrMessageWaiting
Ev

CallControlAddressListener#
addressMessageWaiting

Application Enablement Services JTAPI Programmer’s Guide Page 77 of 86

CSTAServiceInitiatedEvent CallCtlConnInitiatedEv CallControlConnectionListener#
connectionInitiated

CSTANetworkReachedEvent CallCtlConnNetworkReache
dEv

CallControlConnectionListener#
connectionNetworkReached

CSTAQueuedEvent CallCtlConnQueuedEv CallControlConnectionListener#
connectionQueued

CSTALoggedOffEvent ACDAddrLoggedOffEv
AgentTermLoggedOffEv

ACDAddressListener# acdAddressLoggedOff

AgentTerminalListener
#agentTerminalLoggedOff

CSTALoggedOnEvent ACDAddrLoggedOnEv

AgentTermLoggedOnEv

ACDAddressListener# acdAddressLoggedOn

AgentTerminalListener
#agentTerminalLoggedOn

CSTANotReadyEvent ACDAddrNotReadyEv

AgentTermNotReadyEv

ACDAddressListener# acdAddressNotReady

AgentTerminalListener
#agentTerminalNotReady

CSTAReadyEvent ACDAddrReadyEv

AgentTermReadyEv

ACDAddressListener# acdAddressReady

AgentTerminalListener #agentTerminalReady

CSTAWorkNotReadyEvent ACDAddrWorkNotReadyEv

AgentTermWorkNotReadyE
v

ACDAddressListener#
acdAddressWorkNotReady

AgentTerminalListener
#agentTerminalWorkNotReady

CSTAWorkReadyEvent ACDAddrWorkReadyEv

AgentTermWorkReadyEv

ACDAddressListener# acdAddressWorkReady

AgentTerminalListener
#agentTerminalWorkReady

The following table maps route related TSAPI events and their JTAPI equivalents

TSAPI Event JTAPI Event

CSTARouteRequestExtEvent RouteEvent

CSTAReRouteRequestEvent ReRouteEvent

CSTARouteUsedExtEvent RouteUsedEvent

CSTARouteEndEvent RouteEndEvent

CSTARouteRegisterAbortEvent RouteCallbackEndedEvent

Converting TSAPI based Java constructs to standard JTAPI
objects

Some Avaya private interfaces expose classes that represent raw TSAPI constructs

For example, com.avaya.jtapi.tsapi.V7DeviceHistoryEntry#getOldConnectionID() returns you a
ConnectionID, which contains a TSAPI callID.

To convert this callID into a first class JTAPI object (in this case a javax.telephony.Call
implementation), please cast the provider to the com.avaya.jtapi.tsapi.ITsapiProviderPrivate
interface and use the getCall(int callID) API.

Application Enablement Services JTAPI Programmer’s Guide Page 78 of 86

V7DeviceHistoryEntry history = ……..; //assume code that returns a
V7DeviceHistoryEntry

Provider avayaProvider = ….; //assume code that creates a provider
instance

/*com.avaya.jtapi.tsapi.V7DeviceHistoryEntry#getOldConnectionID()
returns you a ConnectionID, which contains a TSAPI callID.*/

ConnectionID connID = history.getOldConnectionID();

//promote to a first class JTAPI object (in this case a
javax.telephony.Call implementation)

Call call = ((com.avaya.jtapi.tsapi.ITsapiProviderPrivate)
avayaProvider).getCall(connID.getCallID());

Similarly, the com.avaya.jtapi.tsapi.ITsapiConnIDPrivate interface exposes a ConnectionID
object.

ITsapiProviderPrivate also contains methods to promote ConnectionID objects to JTAPI
Connection/TerminalConnection objects (as the case may be).

ExtendedDeviceID is currently not exposed, but may be exposed in future releases. Please use
the relevant methods int ITsapiProviderPrivate to promote these ExtendedDeviceID objects to
JTAPI Address / Terminal implementations.

TSAPI Construct Java Class JTAPI Object Conversion Method in
ITsapiProviderPrivate

ExtendedDeviceID_t ExtendedDeviceID Address getAddress()

ExtendedDeviceID_t ExtendedDeviceID Terminal getTerminal()

ConnectionID_t ConnectionID Connection getConnection()

ConnectionID_t ConnectionID TerminalConnection getTerminalConnection()

callID (field in a
ConnectionID_t)

int Call getCall()

Application Enablement Services JTAPI Programmer’s Guide Page 79 of 86

APPENDIX D - TSAPI Error Code Definitions

This appendix lists all of the values for the TSAPI error codes.

There are two major classes of TSAPI error codes:

• CSTA universal Failures

• ACS Universal Failures

CSTA Universal Failures

CSTA Universal Failures are error codes returned by CSTAErrorCode:Unexpected CSTA error
code. The following table lists the definitions for the CSTA error codes. Consult the TSAPI
Programmer’s Guide for the definition of the numeric error code.

TABLE: CSTA Error Definitions

Error Numeric Code

genericUnspecified 0

genericOperation 1

requestIncompatibleWithObject 2

valueOutOfRange 3

objectNotKnown 4

invalidCallingDevice 5

invalidCalledDevice 6

invalidForwardingDestination 7

privilegeViolationOnSpecifiedDevice 8

privilegeViolationOnCalledDevice 9

privilegeViolationOnCallingDevice 10

Application Enablement Services JTAPI Programmer’s Guide Page 80 of 86

invalidCstaCallIdentifier 11

invalidCstaDeviceIdentifier 12

invalidCstaConnectionIdentifier 13

invalidDestination 14

invalidFeature 15

invalidAllocationState 16

invalidCrossRefId 17

invalidObjectType 18

securityViolation 19

genericStateIncompatibility 21

invalidObjectState 22

invalidConnectionIdForActiveCall 23

noActiveCall 24

noHeldCall 25

noCallToClear 26

noConnectionToClear 27

noCallToAnswer 28

noCallToComplete 29

genericSystemResourceAvailability 31

serviceBusy 32

resourceBusy 33

Application Enablement Services JTAPI Programmer’s Guide Page 81 of 86

resourceOutOfService 34

networkBusy 35

networkOutOfService 36

overallMonitorLimitExceeded 37

conferenceMemberLimitExceeded 38

genericSubscribedResourceAvailability 41

objectMonitorLimitExceeded 42

externalTrunkLimitExceeded 43

outstandingRequestLimitExceeded 44

genericPerformanceManagement 51

performanceLimitExceeded 52

unspecifiedSecurityError 60

sequenceNumberViolated 61

timeStampViolated 62

pacViolated 63

sealViolated 64

genericUnspecifiedRejection 70

genericOperationRejection 71

duplicateInvocationRejection 72

unrecognizedOperationRejection 73

mistypedArgumentRejection 74

Application Enablement Services JTAPI Programmer’s Guide Page 82 of 86

resourceLimitationRejection 75

acsHandleTerminationRejection 76

serviceTerminationRejection 77

requestTimeoutRejection 78

requestsOnDeviceExceededRejection 79

unrecognizedApduRejection 80

mistypedApduRejection 81

badlyStructuredApduRejection 82

initiatorReleasingRejection 83

unrecognizedLinkedidRejection 84

linkedResponseUnexpectedRejection 85

unexpectedChildOperationRejection 86

mistypedResultRejection 87

unrecognizedErrorRejection 88

unexpectedErrorRejection 89

mistypedParameterRejection 90

nonStandard 100

Application Enablement Services JTAPI Programmer’s Guide Page 83 of 86

ACS Universal Failures

ACS Universal Failures are error codes returned by CSTAErrorCode:Unexpected ACS
error code. The following table lists the definitions for the ACS error codes. Consult the
TSAPI Programmer’s Guide for the definition of the numeric error code

Error Numeric Code Description

ACSERR_APIVERDENIED -1 This return indicates that the API Version
requested is invalid and not supported by
the existing API Client Library.

ACSERR_BADPARAMETER -2 One or more of the parameters is invalid.

ACSERR_DUPSTREAM -3 This return indicates that an ACS Stream
is already established with the requested
Server.

ACSERR_NODRIVER -4 This error return value indicates that no
API Client Library Driver was found or
installed on the system.

ACSERR_NOSERVER -5 This indicates that the requested Server is
not present in the network.

ACSERR_NORESOURCE -6 This return value indicates that there are
insufficient resources to open a ACS
Stream.

ACSERR_UBUFSMALL -7 The user buffer size was smaller than the
size of the next available event.

ACSERR_NOMESSAGE -8 There were no messages available to
return to the application.

ACSERR_UNKNOWN -9 The ACS Stream has encountered an
unspecified error.

ACSERR_BADHDL -10 The ACS Handle is invalid.

Application Enablement Services JTAPI Programmer’s Guide Page 84 of 86

ACSERR_STREAM_FAILED -11 The ACS Stream has failed due to network
problems. No further operations are
possible on this stream.

ACSERR_NOBUFFERS -12 There were not enough buffers available to
place an outgoing message on the send
queue. No message has been sent.

ACSERR_QUEUE_FULL -13 The send queue is full.

ACSERR_SSL_INIT_FAILED -14 A stream could not be opened because
the initialization of the OpenSSL library
failed.

ACSERR_SSL_CONNECT_FAILED -15 A stream could not be opened because
the SSL connection failed.

ACSERR_SSL_FQDN_MISMATCH -16 During the SSL handshake, the fully
qualified domain name (FQDN) in the
server certificate did not match the
expected FQDN.

Glossary
A
AE
Used as a “shorthand” term in this documentation for Application Enablement.
AES
Stands for Advanced Encryption Scheme or Application Enablement Services
API
Application Programming Interface. A “shorthand” term in this documentation for the
Java interface provided by the Application Enablement Services.
application machine
The hardware platform that the JTAPI API library and the cli are running on

C
client application
An application created using the JTAPI library
CSTA
Computer-Supported Telecommunications Applications

E
ECMA
European Computer Manufacturers Association. A European association for
standardizing information and communication systems in order to reflect the international
activities of the organization.

J
JDK
Java Developers Kit
J2SE
Java 2 Platform, Standard Edition
JTAPI
Java Telephony Application Programming Interface
JVM
Java Virtual Machine. Interprets compiled Java binary code for a computer’s processor
so that is can perform a Java program’s instructions

O
OAM
Operations, Administration and Maintenance

Application Enablement Services JTAPI Programmer’s Guide Page 86 of 86

R
RPM
Red Hat Package Manager

S
SAT
System Access Terminal (for Communication Manager)
SDK
Software Development Kit

